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Plan of the talk

1. Setting and results

2. Proofs: structure and ideas
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Bienaymé-Galton-Watson process with immigration (BGWI)

Offspring µ (∼ (ξ
(n)
i )i,n∈N IID)& Immigration ν (∼ (ηn)n≥1 IID) laws on N := {0, 1, . . .},

satisfying (ξ
(n)
i )i,n∈N ⊥⊥ (ηn)n≥1:

the population Z1(n) at generation n ∈ N equals

Z1(0) = z ∈ N & Z1(n) =

Z1(n−1)∑
i=1

ξ
(n−1)
i + ηn for any n ≥ 1.

BGWI Z1 = (Z1(n))n∈N is Markov with state space N := {0, 1, . . .}. We assume:

⋄ reproduction is critical Eξ(n)i =
∑

j∈N jµ(j) = 1 & non-degenerate µ(1) < 1,

⋄ ν(0) > 0 so that immigrants allow non-trivial local extinctions:

E := {m ∈ N : Z1(m) = 0} & L1(n) := |E ∩ {0, . . . n}| a.s.−→ ∞ as n → ∞.

Main Question. Is there a scaling limit of L1? More generally, is there joint scaling limit(
1

bn
Z1(⌊n·⌋),

1

cn
L1(⌊n·⌋)

)
for some scaling sequences bn, cn → ∞?
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Discrete Lamperti transformation of BGWI & the scaling limit for Z1

The formula Z1(0) = z ∈ N & Z1(n+ 1) =
∑Z1(n)

i=1 ξ
(n)
i + ηn+1, n ∈ N, implies

Z1 = z +X1 ◦ C1 + Y1, where C1(k) =
∑

0≤j<k

Z1(j) for all k ∈ N and

random walks X1 ⊥⊥ Y1, have jump laws µ̃ (µ̃(k) = µ(k + 1), k ∈ N ∪ {−1}) and ν. Note:

⋄ µ critical =⇒ E|X1(n)| < ∞ and EX1(n) = 0 for all n ∈ N;
⋄ X1 is downwards skip-free (but Z1 is not!);

⋄ Y1 has non-decreasing trajectories.

Heuristic : if X1 and Y1 have scaling limits, Z1 will be in a domain of attraction (DoA) of a
self-similar continuous-state branching process with immigration (CBI).
Caution: scale X1 and Y1 in a balanced way so neither reproduction nor immigration
dominate.
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Scaling limit for BGWI process Z1 requires Assumption (SL)
Assumption (SL) The generating functions

f(s) :=
∑
n∈N

snµ(n) and g(s) :=
∑
n∈N

snν(n), s ∈ [0, 1],

of the offspring and immigration distributions µ and ν on N := {0, 1, . . .} take the form

f(s) = s+ c(1− s)1+αl(1− s) and g(s) = 1− d(1− s)αk(1− s), s ∈ (0, 1),

for c, d > 0 and α ∈ (0, 1] and slowly varying functions l, k : (0, 1) → (0,∞), s.t. l(s)
k(s)

s→0−→ 1

Assumption (SL) ⇐⇒ µ critical & X1 ∈ SDoA(1 + α) & ∃ lim
k→∞

kν(k)/µ(k) ∈ (0,∞)

Theorem ([CPGUB13]: X1 ∈RW(µ̃), Y1 ∈RW(ν), Z1(n) = X1(
∑n−1

i=1 Z1(i)) + Y1(n))

⋄ (X1(⌊nbn·⌋), Y1(⌊n·⌋)) /bn
d→ (X,Y ), where bαn ∼ nl(1/bn) ∼ nk(1/bn) as n → ∞,

α-stable subordinator Y and (1 + α)-stable spectrally positive Lévy process X;

⋄ Z1(⌊n·⌋)/bn
d→ Z, where Z = X(

∫ ·
0 Z(s) ds) + Y is a self-similar CBI of index α.
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⋄ Z1(⌊n·⌋)/bn
d→ Z, where Z = X(

∫ ·
0 Z(s) ds) + Y is a self-similar CBI of index α.

5 / 17



Scaling limit for BGWI process Z1 requires Assumption (SL)
Assumption (SL) The generating functions

f(s) :=
∑
n∈N

snµ(n) and g(s) :=
∑
n∈N

snν(n), s ∈ [0, 1],

of the offspring and immigration distributions µ and ν on N := {0, 1, . . .} take the form

f(s) = s+ c(1− s)1+αl(1− s) and g(s) = 1− d(1− s)αk(1− s), s ∈ (0, 1),

for c, d > 0 and α ∈ (0, 1] and slowly varying functions l, k : (0, 1) → (0,∞), s.t. l(s)
k(s)

s→0−→ 1

Assumption (SL) ⇐⇒ µ critical & X1 ∈ SDoA(1 + α) & ∃ lim
k→∞

kν(k)/µ(k) ∈ (0,∞)

Theorem ([CPGUB13]: X1 ∈RW(µ̃), Y1 ∈RW(ν), Z1(n) = X1(
∑n−1

i=1 Z1(i)) + Y1(n))

⋄ (X1(⌊nbn·⌋), Y1(⌊n·⌋)) /bn
d→ (X,Y ), where bαn ∼ nl(1/bn) ∼ nk(1/bn) as n → ∞,

α-stable subordinator Y and (1 + α)-stable spectrally positive Lévy process X;
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Joint scaling limit for BGWI Z1 and counting local time L1 under (SL)
Assumption (SL) The generating functions for reproduction µ and immigration ν:

f(s) = s+ c(1− s)1+αl(1− s) & g(s) = 1− d(1− s)αk(1− s),

where l(s) ∼ k(s) as s → 0 and c, d > 0, 0 < α ≤ 1.

Theorem (Main Limit Theorem in [MPUB25])

Let Assumption (SL) hold with δ = d
αc ∈ (0, 1). Then, for any κ > 0, the sequence (cn),

cn := κnP(Z1(n) = 0) , n ∈ N,

is regularly varying of index 1− δ. There exists κ so that weak convergence (in Skorohod top.)(
1

bn
Z1(⌊n·⌋),

1

cn
L1(⌊n·⌋)

)
d→ (Z,L) as n → ∞

holds, where bαn ∼ nl(1/bn), Z = X(
∫ ·
0 Z(s) ds) + Y α-self-similar CBI (α-stable subord. Y ,

(1 + α)-stable spectrally positive Lévy process X) and L Markov local time of Z at 0.
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Remarks on the Main Limit Theorem
Under (SL) and δ = d

αc ∈ (0, 1), ∃κ > 0 s.t. regularly varying cn := κnP(Z1(n) = 0) satisfies(
1

bn
Z1(⌊n·⌋),

1

cn
L1(⌊n·⌋)

)
d→ (Z,L) as n → ∞. (1)

⋄ Both (cn) and Markov local time L defined up to a multiplicative constant.

⋄ δ ∈ (0, 1) is necessary: if δ ≥ 1, Z is not point recurrent at 0 [FUB14]. For example, if
α = 1, then Z ∼ 2

c · BESQ(2δ), making 0 is polar.
⋄ Weak limit (1) covers all critical offspring and immigration laws µ and ν in

SDoA(1 + α) and SDoA(α), respectively, for α ∈ (0, 1).
⋄ Weak limit (1) covers all critical finite-variance offspring laws µ. Reproduction µ has

finite variance ⇐⇒ f ′′(1) < ∞ ⇐⇒ α = 1 & ∃ lims↓0 l(s) < ∞. Then, by balance

condition l(s)
k(s) → 1 as s → 0 in Assumption (SL), we have finite-mean immigration ν.

⋄ If α = 1 but f ′′(1) = ∞, offspring law µ has infinite variance but scaling limit (1)
equals 2

c · BESQ(2δ) and its Markovian local time at 0.
⋄ Substituting (µ, ν) with (µ, νn), for immigration νn := (1− pn)δ0 + pn

1
1−ν(0)ν|N\{0} with

pn ↑ 1, produces 1
bn
Z

(n)
1 (⌊n·⌋) d→ Z as in (1), but 1

c′n
L
(n)
1 (⌊n·⌋) ̸→ L for any scaling (c′n).
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⋄ δ ∈ (0, 1) is necessary: if δ ≥ 1, Z is not point recurrent at 0 [FUB14]. For example, if

α = 1, then Z ∼ 2
c · BESQ(2δ), making 0 is polar.

⋄ Weak limit (1) covers all critical offspring and immigration laws µ and ν in
SDoA(1 + α) and SDoA(α), respectively, for α ∈ (0, 1).

⋄ Weak limit (1) covers all critical finite-variance offspring laws µ. Reproduction µ has
finite variance ⇐⇒ f ′′(1) < ∞ ⇐⇒ α = 1 & ∃ lims↓0 l(s) < ∞. Then, by balance

condition l(s)
k(s) → 1 as s → 0 in Assumption (SL), we have finite-mean immigration ν.

⋄ If α = 1 but f ′′(1) = ∞, offspring law µ has infinite variance but scaling limit (1)
equals 2

c · BESQ(2δ) and its Markovian local time at 0.
⋄ Substituting (µ, ν) with (µ, νn), for immigration νn := (1− pn)δ0 + pn

1
1−ν(0)ν|N\{0} with

pn ↑ 1, produces 1
bn
Z

(n)
1 (⌊n·⌋) d→ Z as in (1), but 1
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Septuple Limit Theorem
⋄ Z1 = X1 ◦ C1 + Y1, where C1 =

∑
0≤j<· Z1(j) and RW(µ̃)∋ X1 ⊥⊥ Y1 ∈RW(ν).

⋄ Let L1(X1) and L1(Z1) be the counting local times at 0 of X1 and Z1.

⋄ Z = X ◦ C + Y , where C =
∫ ·
0 Z(s) ds and X ⊥⊥ Y stable Lévy processes with Laplace

exponents Ψ(λ) = cλ1+α and Φ(λ) = dλα.

⋄ Let L(X) and L(Z) be (Markovian) local times at 0 of X and Z.

Theorem (Septuple limit theorem in [MPUB25])

Under (SL) with δ = d
αc ∈ (0, 1) and let (bn), (cn) be regularly varying scaling sequences as

above. Then there exists a regularly varying sequence (an) of index 1 + 1/α, such that(
X1(⌊nbn·⌋)

bn
,
L1(X1)(⌊nbn·⌋)

anbn
,
Y1(⌊n·⌋)

bn
,
C1(⌊n·⌋)

nbn
,
X1 ◦ C1(⌊n·⌋)

bn
,
Z1(⌊n·⌋)

bn
,
L1(Z1)(⌊n·⌋)

cn

)
d→ (X,L(X), Y, C,X ◦ C,Z,L(Z)) as n → ∞.

Note four different spatial scales: bn, cn, nbn and anbn , where (an) is RV(1 + 1/α).
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2. Proofs: structure and ideas

The Septuple Limit Theorem follows directly from the Main Limit Theorem [MPUB25],
stability of time-change equations for CBIs [CPGUB13] and the invariance principle for Local
times [MUB22] applied to the downward skip-free random walk X1.

Proof of the Main Limit Theorem [MPUB25] is based on the invariance principle for Local
times [MUB22] applied to the BGWI Z1:

⋄ The proof of Main Limit Theorem presents a new paradigm for the verification of the
assumptions of the invariance principle for local times [MUB22] that might have
applications in other settings (reinforced RWs, RWs in random environment, etc).

⋄ The verification of the assumptions in [MUB22] for BGWI Z1 is non-trivial, requiring
novel results on branching processes and their scaling limits.
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Invariance principle for local times [MUB22] in the language of BGWIs

Theorem ([MUB22, Thm 1])

Assumption (SL) holds with δ = d
αc ∈ (0, 1) and bαn ∼ nl(1/bn) as n → ∞. Let sequence of

scaled BGWIs (Zn
d
= Z1(⌊n·⌋)/bn) be coupled with self-similar CBI Z. For any t ∈ [0,∞), let

gt(Z) := sup {s ≤ t : Z(s) = 0} and dt(Z) := inf {s > t : Z(s) = 0} ,

and the corresponding gt(Zn) and dt(Zn). Assume Zn
P→ Z and, for every t > 0,

gt(Zn)
P→ gt(Z) and dt(Zn)

P→ dt(Z), as n → ∞. (2)

Then for Ln(t) := |{s ∈ N/n : Zn(s) = 0} ∩ [0, t]|, some κ̃ > 0 and c̃n := κ̃
P(d1/n(Zn)>1)

, the

following limit in probability holds:

(Zn, Ln/c̃n)
P→ (Z,L) as n → ∞.

Task: for a coupling (Zn, Z), prove (2) and show c̃n ∼ cn = κnP(Z1(n) = 0) as n → ∞.
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Proving gt(Zn)
P→ gt(Z) and dt(Zn)

P→ dt(Z) for examples in [MUB22]

The applications in [MUB22] of the general form of Theorem on the previous slide for
regenerative processes use path-wise arguments on the Skorokhod space to prove

gt(Zn)
P→ gt(Z) & dt(Zn)

P→ dt(Z).

These path-wise arguments require:

⋄ downwards regular at zero limit process (CBI Z is not since it is non-negative).

⋄ downwards skip-free pre-limit processes (scaled BGWIs Zn are not!);

A different approach is required for BGWIs!!
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Proving gt(Zn)
P→ gt(Z) and dt(Zn)

P→ dt(Z) for branching processes
For ε > 0, for excursions of Z and Zn straddling time t > 0, set

gεt (Z) := sup {s ≤ t : Z(t) ∈ [0, ε)]} and dεt (Z) := inf {s > t : Z(t) ∈ [0, ε)} .

Then, for any η > 0, we have

P(|dt(Z)− dt(Zn)| > η) ≤ Id + IId + IIId and P(|gt(Z)− gt(Zn)| > η) ≤ Ig + IIg + IIIg,

Id := P(|dt(Z)− dεt (Z)| > η/3) , Ig := P(|gt(Z)− gεt (Z)| > η/3) ,
IId := P(|dεt (Z)− dεt (Zn)| > η/3) , IIg := P(|gεt (Z)− gεt (Zn)| > η/3) ,
IIId := P(|dt(Zn)− dεt (Zn)| > η/3) , IIIg := P(|gt(Zn)− gεt (Zn)| > η/3) .

We need to prove
lim
ε→0

lim sup
n→∞

P (n, ε) = 0, where P (n, ε) ∈ {Id, IId, IIId, Ig, IIg, IIIg}.
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Proofs of Ig, Id, IIg, IId use path-wise arguments only

Id = P(|dt(Z)− dεt (Z)| > η/3)
ε↓0−→ 0 & Ig = P(|gt(Z)− gεt (Z)| > η/3)

ε↓0−→ 0

require quasi left continuity of CBI Z and that Z(s−) > 0 for any gt(Z) < s < dt(Z).

Limits of IId = P(|dεt (Z)− dεt (Zn)| > η/3) & IIg = P(|gεt (Z)− gεt (Zn)| > η/3) require a
coupling ((Zn), Z) and lemma on the Skorokhod space D:

Lemma

If f ∈ D satisfies TO(f) ≤ min{TC(f) , T
−
C (f)}, where O = [0, ε), C = [0, ε] and

TO = inf{t ≥ 0 : f(t) ∈ O}, T−
C = inf{t ≥ 0 : f(t−) ∈ C}, then for any fn → f we have

TO(fn) → TO(f) .

IId: Z downwards regular at ε & Lemma =⇒ |dεt (Z)− dεt (Zn)|
a.s.−→ 0 as n ↑ ∞

IIg: time reverse Ẑ(s) := Z(max{t− s, 0}−), note that gεt (Zn) = t− TO(Ẑn) and

gεt (Z) = t− TO(Ẑ) and apply Lemma to Ẑn → Ẑ to get |gεt (Z)− gεt (Zn)|
a.s.−→ 0 as n ↑ ∞
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IIId = P(|dt(Zn)− dεt(Zn)| > η/3) & IIIg = P(|gt(Zn)− gεt (Zn)| > η/3)

Theorem (Theorem 6 in [MPUB25])

Under Assumption (SL) with δ = d
αc ∈ (0, 1), for any t ≥ 0 and ε > 0, we have

(gεt (Zn), gt(Zn))
d→ (gεt (Z), gt(Z)) and (dεt (Zn), dt(Zn))

d→ (dεt (Z), dt(Z)) as n → ∞.

By [MPUB25, Thm 6] we get

gεt (Zn)− gt(Zn)
d→ gεt (Z)− gt(Z) and dt(Zn)− dεt (Zn)

d→ dt(Z)− dεt (Z) as n → ∞

and hence IIId = P(|dt(Zn)− dεt (Zn)| > η/3)
n↑∞−→ P(|dt(Z)− dεt (Z)| > η/3) = Id. Ditto for

IIIg
n↑∞−→ Ig. We already know Id, Ig

ε↓∞−→ 0 finishing the proof.

But how does one prove [MPUB25, Thm 6]?
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(dεt (Zn), dt(Zn))
d→ (dεt (Z), dt(Z))

(gεt (Zn), gt(Zn))
d→ (gεt (Z), gt(Z))

Theorem 6

Proposition 12:
Conditional law of CBI
Z(t), given gt(Z) = s,
is Linnik law ([Get79])

Lemma 13:
(gt(Zn), Zn(t))
d→ (gt(Z), Z(t))

Lemma 5:
(TO(fn) , fn(TO(fn)))
→ (TO(f) , f(TO(f)))

Lemma 10:
Joint convergence (tn → t):

(gtn(Zn), dtn(Zn))
d→ (gt(Z), dt(Z))

Lemma 11:
Convergence of hitting times of 0
for starting points zn → z > 0

of BGWI/CBI: d0(Z
zn
n )

d→ d0(Z
z)

Theorem 3:
Yaglom limit of Zn(tn),
given d1/n(Zn) > tn, as

tn
n→∞−→ t > 0 is Linnik law

Corollary 9: Local limit theorem (sn → s)

P(gt(Zn)/t = sn) ∼ 1
n
sin(πδ)

π s−δ(1− s)δ−1

Lemma 7:
Large population limit of hitting times of 0

of BGW/CB (zn → z): d0(Z̃
zn
n )

d→ d0(Z̃
z)

(follows from asymptotics in [Sla68])

Lemma 8: For BGWI Z1, asymptotics of
P(Z1(n) = 0) ∼ l∗(n)n−δ (BP & [Sla68])

P(d1(Z1) > n) ∼ sin(πδ)
π nδ−1/l∗(n) (Renewal th.)

(numbers next to lemmas, corollary, proposition and theorems correspond to those in the preprint [MPUB25])
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See eponymous videos Part 1: Results and Part 2: Proofs

Thank you for your attention!!
[MPUB25] available on arXiv:2503.20923
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https://youtu.be/PCuIkPBApoE?si=abwrWDXAy9uYOqO4


Prob-AM
See eponymous videos Part 1: Results and Part 2: Proofs

Thank you for your attention!!
[MPUB25] available on arXiv:2503.20923

16 / 17

https://www.youtube.com/channel/UCXSoLS_uKebYZ9GzgAF0ZsA
https://youtu.be/M6cBiiJt_90?si=VRRoRmTYZMzTjat4
https://youtu.be/PCuIkPBApoE?si=abwrWDXAy9uYOqO4


References
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