Critical branching processes with immigration: scaling limits of local extinction sets

> Aleksandar Mijatović Department of Statistics

Joint with Benjamin Povar (Warwick) and Gerónimo Uribe Bravo (UNAM)

Branching and Persistence Conference at University of Angers

April 9, 2025

EP/W006227/1 & EP/V009478/1

Plan of the talk

- 1. Setting and results
- 2. Proofs: structure and ideas

Offspring μ (~ $(\xi_i^{(n)})_{i,n\in\mathbb{N}}$ IID) & Immigration ν (~ $(\eta_n)_{n\geq 1}$ IID) laws on $\mathbb{N} \coloneqq \{0, 1, \ldots\}$, satisfying $(\xi_i^{(n)})_{i,n\in\mathbb{N}} \perp (\eta_n)_{n\geq 1}$:

Offspring μ (~ $(\xi_i^{(n)})_{i,n\in\mathbb{N}}$ IID) & Immigration ν (~ $(\eta_n)_{n\geq 1}$ IID) laws on $\mathbb{N} \coloneqq \{0, 1, \ldots\}$, satisfying $(\xi_i^{(n)})_{i,n\in\mathbb{N}} \perp (\eta_n)_{n\geq 1}$: the population $Z_1(n)$ at generation $n \in \mathbb{N}$ equals

$$Z_1(0) = z \in \mathbb{N}$$
 & $Z_1(n) = \sum_{i=1}^{Z_1(n-1)} \xi_i^{(n-1)} + \eta_n$ for any $n \ge 1$.

BGWI $Z_1 = (Z_1(n))_{n \in \mathbb{N}}$ is Markov with state space $\mathbb{N} \coloneqq \{0, 1, \ldots\}$.

Offspring μ ($\sim (\xi_i^{(n)})_{i,n\in\mathbb{N}}$ IID) & Immigration ν ($\sim (\eta_n)_{n\geq 1}$ IID) laws on $\mathbb{N} \coloneqq \{0, 1, \ldots\}$, satisfying $(\xi_i^{(n)})_{i,n\in\mathbb{N}} \perp (\eta_n)_{n\geq 1}$: the population $Z_1(n)$ at generation $n \in \mathbb{N}$ equals

$$Z_1(0) = z \in \mathbb{N}$$
 & $Z_1(n) = \sum_{i=1}^{Z_1(n-1)} \xi_i^{(n-1)} + \eta_n$ for any $n \ge 1$.

BGWI $Z_1 = (Z_1(n))_{n \in \mathbb{N}}$ is Markov with state space $\mathbb{N} \coloneqq \{0, 1, \ldots\}$. We assume: \diamond reproduction is critical $\mathbb{E}\xi_i^{(n)} = \sum_{j \in \mathbb{N}} j\mu(j) = 1$ & non-degenerate $\mu(1) < 1$,

Offspring μ ($\sim (\xi_i^{(n)})_{i,n\in\mathbb{N}}$ IID) & Immigration ν ($\sim (\eta_n)_{n\geq 1}$ IID) laws on $\mathbb{N} \coloneqq \{0, 1, \ldots\}$, satisfying $(\xi_i^{(n)})_{i,n\in\mathbb{N}} \perp (\eta_n)_{n\geq 1}$: the population $Z_1(n)$ at generation $n \in \mathbb{N}$ equals

$$Z_1(0) = z \in \mathbb{N}$$
 & $Z_1(n) = \sum_{i=1}^{Z_1(n-1)} \xi_i^{(n-1)} + \eta_n$ for any $n \ge 1$.

BGWI $Z_1 = (Z_1(n))_{n \in \mathbb{N}}$ is Markov with state space $\mathbb{N} \coloneqq \{0, 1, \ldots\}$. We assume: \diamond reproduction is **critical** $\mathbb{E}\xi_i^{(n)} = \sum_{j \in \mathbb{N}} j\mu(j) = 1$ & **non-degenerate** $\mu(1) < 1$, $\diamond \quad \nu(0) > 0$ so that immigrants allow non-trivial local extinctions:

$$E \coloneqq \{m \in \mathbb{N} : Z_1(m) = 0\} \quad \& \quad L_1(n) \coloneqq |E \cap \{0, \dots n\}| \xrightarrow{\text{a.s.}} \infty \quad \text{as } n \to \infty.$$

Offspring μ ($\sim (\xi_i^{(n)})_{i,n\in\mathbb{N}}$ IID) & Immigration ν ($\sim (\eta_n)_{n\geq 1}$ IID) laws on $\mathbb{N} \coloneqq \{0, 1, \ldots\}$, satisfying $(\xi_i^{(n)})_{i,n\in\mathbb{N}} \perp (\eta_n)_{n\geq 1}$: the population $Z_1(n)$ at generation $n \in \mathbb{N}$ equals

$$Z_1(0) = z \in \mathbb{N}$$
 & $Z_1(n) = \sum_{i=1}^{Z_1(n-1)} \xi_i^{(n-1)} + \eta_n$ for any $n \ge 1$.

BGWI $Z_1 = (Z_1(n))_{n \in \mathbb{N}}$ is Markov with state space $\mathbb{N} \coloneqq \{0, 1, \ldots\}$. We assume: \diamond reproduction is **critical** $\mathbb{E}\xi_i^{(n)} = \sum_{j \in \mathbb{N}} j\mu(j) = 1$ & **non-degenerate** $\mu(1) < 1$, $\diamond \quad \nu(0) > 0$ so that immigrants allow non-trivial local extinctions:

$$E \coloneqq \{m \in \mathbb{N} : Z_1(m) = 0\} \quad \& \quad L_1(n) \coloneqq |E \cap \{0, \dots, n\}| \xrightarrow{\text{a.s.}} \infty \quad \text{as } n \to \infty.$$

Main Question. Is there a scaling limit of L_1 ?

Offspring μ ($\sim (\xi_i^{(n)})_{i,n\in\mathbb{N}}$ IID) & Immigration ν ($\sim (\eta_n)_{n\geq 1}$ IID) laws on $\mathbb{N} \coloneqq \{0, 1, \ldots\}$, satisfying $(\xi_i^{(n)})_{i,n\in\mathbb{N}} \perp (\eta_n)_{n\geq 1}$: the population $Z_1(n)$ at generation $n \in \mathbb{N}$ equals

$$Z_1(0) = z \in \mathbb{N}$$
 & $Z_1(n) = \sum_{i=1}^{Z_1(n-1)} \xi_i^{(n-1)} + \eta_n$ for any $n \ge 1$.

BGWI $Z_1 = (Z_1(n))_{n \in \mathbb{N}}$ is Markov with state space $\mathbb{N} \coloneqq \{0, 1, \ldots\}$. We assume: \diamond reproduction is **critical** $\mathbb{E}\xi_i^{(n)} = \sum_{j \in \mathbb{N}} j\mu(j) = 1$ & **non-degenerate** $\mu(1) < 1$, $\diamond \quad \nu(0) > 0$ so that immigrants allow non-trivial local extinctions:

$$E \coloneqq \{m \in \mathbb{N} : Z_1(m) = 0\} \quad \& \quad L_1(n) \coloneqq |E \cap \{0, \dots n\}| \xrightarrow{\text{a.s.}} \infty \quad \text{as } n \to \infty.$$

Main Question. Is there a scaling limit of L_1 ? More generally, is there joint scaling limit

$$\left(\frac{1}{b_n}Z_1(\lfloor n\cdot \rfloor), \frac{1}{c_n}L_1(\lfloor n\cdot \rfloor)\right) \quad \text{for some scaling sequences } b_n, c_n \to \infty?$$

The formula $Z_1(0) = z \in \mathbb{N}$ & $Z_1(n+1) = \sum_{i=1}^{Z_1(n)} \xi_i^{(n)} + \eta_{n+1}, n \in \mathbb{N}$, implies

The formula $Z_1(0) = z \in \mathbb{N}$ & $Z_1(n+1) = \sum_{i=1}^{Z_1(n)} \xi_i^{(n)} + \eta_{n+1}, n \in \mathbb{N}$, implies

$$Z_1 = z + X_1 \circ C_1 + \underline{Y_1}, \quad \text{where} \quad C_1(k) = \sum_{0 \leq j < k} Z_1(j) \quad \text{for all } k \in \mathbb{N} \text{ and}$$

random walks $X_1 \perp Y_1$, have jump laws $\tilde{\mu}$ ($\tilde{\mu}(k) = \mu(k+1)$, $k \in \mathbb{N} \cup \{-1\}$) and ν . Note:

The formula $Z_1(0) = z \in \mathbb{N}$ & $Z_1(n+1) = \sum_{i=1}^{Z_1(n)} \xi_i^{(n)} + \eta_{n+1}, n \in \mathbb{N}$, implies

$$Z_1 = z + X_1 \circ C_1 + \underline{Y_1}, \quad \text{where} \quad C_1(k) = \sum_{0 \leq j < k} Z_1(j) \quad \text{for all } k \in \mathbb{N} \text{ and}$$

random walks $X_1 \perp Y_1$, have jump laws $\tilde{\mu}$ ($\tilde{\mu}(k) = \mu(k+1)$, $k \in \mathbb{N} \cup \{-1\}$) and ν . Note:

- $\diamond \quad \mu \text{ critical } \implies \mathbb{E}|X_1(n)| < \infty \text{ and } \mathbb{E}X_1(n) = 0 \text{ for all } n \in \mathbb{N};$
- \diamond X₁ is downwards skip-free (but Z₁ is not!);
- \diamond Y_1 has non-decreasing trajectories.

The formula $Z_1(0) = z \in \mathbb{N}$ & $Z_1(n+1) = \sum_{i=1}^{Z_1(n)} \xi_i^{(n)} + \eta_{n+1}, n \in \mathbb{N}$, implies

$$Z_1 = z + X_1 \circ C_1 + \underline{Y_1}, \quad \text{where} \quad C_1(k) = \sum_{0 \leq j < k} Z_1(j) \quad \text{for all } k \in \mathbb{N} \text{ and}$$

random walks $X_1 \perp Y_1$, have jump laws $\tilde{\mu}$ ($\tilde{\mu}(k) = \mu(k+1)$, $k \in \mathbb{N} \cup \{-1\}$) and ν . Note:

- $\diamond \quad \mu \text{ critical } \implies \mathbb{E}|X_1(n)| < \infty \text{ and } \mathbb{E}X_1(n) = 0 \text{ for all } n \in \mathbb{N};$
- \diamond X₁ is downwards skip-free (but Z₁ is not!);
- \diamond Y_1 has non-decreasing trajectories.

Heuristic: if X_1 and Y_1 have scaling limits, Z_1 will be in a domain of attraction (DoA) of a self-similar continuous-state branching process with immigration (CBI). *Caution*: scale X_1 and Y_1 in a **balanced** way so neither reproduction nor immigration

dominate.

$$f(s)\coloneqq \sum_{n\in\mathbb{N}}s^n\mu(n) \quad ext{and} \quad g(s)\coloneqq \sum_{n\in\mathbb{N}}s^n
u(n), \qquad s\in[0,1],$$

of the offspring and immigration distributions μ and ν on $\mathbb{N} \coloneqq \{0, 1, \ldots\}$ take the form

$$f(s)\coloneqq \sum_{n\in\mathbb{N}}s^n\mu(n)\quad\text{and}\quad g(s)\coloneqq \sum_{n\in\mathbb{N}}s^n\nu(n),\qquad s\in[0,1],$$

of the offspring and immigration distributions μ and ν on $\mathbb{N}\coloneqq \{0,1,\ldots\}$ take the form

 $f(s) = s + c(1-s)^{1+lpha} \ell(1-s)$ and $g(s) = 1 - d(1-s)^{lpha} \hbar(1-s), s \in (0,1),$

for c, d > 0 and $\alpha \in (0, 1]$ and slowly varying functions $\ell, \hbar : (0, 1) \to (0, \infty)$, s.t. $\frac{\ell(s)}{\hbar(s)} \xrightarrow{s \to 0} 1$

$$f(s)\coloneqq \sum_{n\in \mathbb{N}}s^n\mu(n) \quad ext{and} \quad g(s)\coloneqq \sum_{n\in \mathbb{N}}s^n
u(n), \qquad s\in [0,1],$$

of the offspring and immigration distributions μ and ν on $\mathbb{N}\coloneqq \{0,1,\ldots\}$ take the form

 $f(s) = s + c(1-s)^{1+lpha} \ell(1-s)$ and $g(s) = 1 - d(1-s)^{lpha} \kappa(1-s), s \in (0,1),$

for c, d > 0 and $\alpha \in (0, 1]$ and slowly varying functions $\ell, \kappa : (0, 1) \to (0, \infty)$, s.t. $\frac{\ell(s)}{\kappa(s)} \xrightarrow{s \to 0} 1$

Assumption (SL) $\iff \mu$ critical & $X_1 \in \text{SDoA}(1+\alpha)$ & $\exists \lim_{k \to \infty} k \overline{\nu}(k) / \overline{\mu}(k) \in (0,\infty)$

$$f(s)\coloneqq \sum_{n\in \mathbb{N}}s^n\mu(n) \quad ext{and} \quad g(s)\coloneqq \sum_{n\in \mathbb{N}}s^n
u(n), \qquad s\in [0,1],$$

of the offspring and immigration distributions μ and ν on $\mathbb{N}\coloneqq \{0,1,\ldots\}$ take the form

 $f(s) = s + c(1-s)^{1+\alpha} \ell(1-s) \quad \text{and} \quad g(s) = 1 - d(1-s)^{\alpha} \hbar(1-s), \quad s \in (0,1),$

for c, d > 0 and $\alpha \in (0, 1]$ and slowly varying functions $\ell, \hbar : (0, 1) \to (0, \infty)$, s.t. $\frac{\ell(s)}{\hbar(s)} \xrightarrow{s \to 0} 1$

Assumption (SL) $\iff \mu \text{ critical } \& X_1 \in \text{SDoA}(1+\alpha) \& \exists \lim_{k \to \infty} k \overline{\nu}(k) / \overline{\mu}(k) \in (0,\infty)$

Theorem ([CPGUB13]: $X_1 \in \mathsf{RW}(\tilde{\mu}), Y_1 \in \mathsf{RW}(\nu), Z_1(n) = X_1(\sum_{i=1}^{n-1} Z_1(i)) + Y_1(n))$

 $\land \quad (X_1(\lfloor nb_n \cdot \rfloor), Y_1(\lfloor n \cdot \rfloor)) / b_n \xrightarrow{d} (X, Y), \text{ where } b_n^{\alpha} \sim n\ell(1/b_n) \sim n\ell(1/b_n) \text{ as } n \to \infty, \\ \alpha \text{-stable subordinator } Y \text{ and } (1 + \alpha) \text{-stable spectrally positive Lévy process } X;$

$$f(s)\coloneqq \sum_{n\in \mathbb{N}}s^n\mu(n) \quad ext{and} \quad g(s)\coloneqq \sum_{n\in \mathbb{N}}s^n
u(n), \qquad s\in [0,1],$$

of the offspring and immigration distributions μ and ν on $\mathbb{N}\coloneqq \{0,1,\ldots\}$ take the form

 $f(s) = s + c(1-s)^{1+lpha} \ell(1-s)$ and $g(s) = 1 - d(1-s)^{lpha} \hbar(1-s), s \in (0,1),$

for c, d > 0 and $\alpha \in (0, 1]$ and slowly varying functions $\ell, h : (0, 1) \to (0, \infty)$, s.t. $\frac{\ell(s)}{h(s)} \xrightarrow{s \to 0} 1$ Assumption (SL) \longleftrightarrow μ critical $\ell, X \in \text{SDoA}(1 \pm \alpha)$ $\ell, \forall x \in (0, \infty)$

Assumption (SL) $\iff \mu$ critical & $X_1 \in \text{SDoA}(1+\alpha)$ & $\exists \lim_{k \to \infty} k \overline{\nu}(k) / \overline{\mu}(k) \in (0,\infty)$

Theorem ([CPGUB13]: $X_1 \in \mathsf{RW}(\tilde{\mu}), Y_1 \in \mathsf{RW}(\nu), Z_1(n) = X_1(\sum_{i=1}^{n-1} Z_1(i)) + Y_1(n))$

 $\diamond \quad (X_1(\lfloor nb_n \cdot \rfloor), Y_1(\lfloor n \cdot \rfloor)) \ / b_n \xrightarrow{d} (X, Y), \ \text{where} \ b_n^{\alpha} \sim n\ell(1/b_n) \sim n \hbar(1/b_n) \ \text{as} \ n \to \infty, \\ \alpha \text{-stable subordinator} \ Y \ \text{and} \ (1 + \alpha) \text{-stable spectrally positive Lévy process} \ X;$

 $\diamond \quad Z_1(\lfloor n \cdot \rfloor)/b_n \xrightarrow{d} Z$, where $Z = X(\int_0^{\cdot} Z(s) \, ds) + Y$ is a self-similar CBI of index α .

Joint scaling limit for BGWI Z_1 and counting local time L_1 under (SL) Assumption (SL) The generating functions for reproduction μ and immigration ν :

 $f(s) = s + c(1-s)^{1+\alpha} \ell(1-s) \quad \& \quad g(s) = 1 - d(1-s)^{\alpha} \hbar(1-s),$

where $l(s) \sim k(s)$ as $s \to 0$ and c, d > 0, $0 < \alpha \le 1$.

Joint scaling limit for BGWI Z_1 and counting local time L_1 under (SL) Assumption (SL) The generating functions for reproduction μ and immigration ν :

$$f(s) = s + c(1-s)^{1+\alpha} \ell(1-s)$$
 & $g(s) = 1 - d(1-s)^{\alpha} \hbar(1-s)$

where $l(s) \sim k(s)$ as $s \to 0$ and c, d > 0, $0 < \alpha \le 1$.

Theorem (Main Limit Theorem in [MPUB25])

Let Assumption (SL) hold with $\delta = \frac{d}{\alpha c} \in (0,1)$. Then, for any $\kappa > 0$, the sequence (c_n) ,

$$c_n \coloneqq \kappa n \mathbb{P}(Z_1(n) = 0), \quad n \in \mathbb{N},$$

is regularly varying of index $1 - \delta$. There exists κ so that weak convergence (in Skorohod top.)

$$\left(\frac{1}{b_n}Z_1(\lfloor n\cdot \rfloor), \frac{1}{c_n}L_1(\lfloor n\cdot \rfloor)\right) \stackrel{d}{\to} (Z,L) \text{ as } n \to \infty$$

holds, where $b_n^{\alpha} \sim n\ell(1/b_n)$, $Z = X(\int_0^{\cdot} Z(s) ds) + Y \alpha$ -self-similar CBI (α -stable subord. Y, $(1 + \alpha)$ -stable spectrally positive Lévy process X) and L Markov local time of Z at 0.

Under (SL) and $\delta = \frac{d}{\alpha c} \in (0,1)$, $\exists \kappa > 0$ s.t. regularly varying $c_n \coloneqq \kappa n \mathbb{P}(Z_1(n) = 0)$ satisfies $\left(\frac{1}{b_n} Z_1(\lfloor n \cdot \rfloor), \frac{1}{c_n} L_1(\lfloor n \cdot \rfloor)\right) \stackrel{d}{\to} (Z, L) \text{ as } n \to \infty.$ (1)

 \diamond Both (c_n) and Markov local time L defined up to a multiplicative constant.

Under (SL) and $\delta = \frac{d}{\alpha c} \in (0,1)$, $\exists \kappa > 0$ s.t. regularly varying $c_n \coloneqq \kappa n \mathbb{P}(Z_1(n) = 0)$ satisfies $\left(\frac{1}{b_n} Z_1(\lfloor n \cdot \rfloor), \frac{1}{c_n} L_1(\lfloor n \cdot \rfloor)\right) \stackrel{d}{\to} (Z, L) \text{ as } n \to \infty.$ (1)

 \diamond Both (c_n) and Markov local time L defined up to a multiplicative constant.

♦ $\delta \in (0,1)$ is necessary: if $\delta \ge 1$, Z is not point recurrent at 0 [FUB14]. For example, if $\alpha = 1$, then $Z \sim \frac{2}{c} \cdot \text{BESQ}(2\delta)$, making 0 is polar.

Under (SL) and $\delta = \frac{d}{\alpha c} \in (0,1)$, $\exists \kappa > 0$ s.t. regularly varying $c_n \coloneqq \kappa n \mathbb{P}(Z_1(n) = 0)$ satisfies $\left(\frac{1}{b_n} Z_1(\lfloor n \cdot \rfloor), \frac{1}{c_n} L_1(\lfloor n \cdot \rfloor)\right) \stackrel{d}{\to} (Z, L) \text{ as } n \to \infty.$ (1)

- \diamond Both (c_n) and Markov local time L defined up to a multiplicative constant.
- ♦ $\delta \in (0,1)$ is necessary: if $\delta \ge 1$, Z is not point recurrent at 0 [FUB14]. For example, if $\alpha = 1$, then $Z \sim \frac{2}{c} \cdot \text{BESQ}(2\delta)$, making 0 is polar.
- ♦ Weak limit (1) covers all critical offspring and immigration laws μ and ν in SDoA(1 + α) and SDoA(α), respectively, for $\alpha \in (0, 1)$.

Under (SL) and $\delta = \frac{d}{\alpha c} \in (0, 1)$, $\exists \kappa > 0$ s.t. regularly varying $c_n \coloneqq \kappa n \mathbb{P}(Z_1(n) = 0)$ satisfies $\left(\frac{1}{b_n} Z_1(\lfloor n \cdot \rfloor), \frac{1}{c_n} L_1(\lfloor n \cdot \rfloor)\right) \xrightarrow{d} (Z, L) \text{ as } n \to \infty.$ (1)

- \diamond Both (c_n) and Markov local time L defined up to a multiplicative constant.
- ♦ $\delta \in (0, 1)$ is necessary: if $\delta \ge 1$, Z is not point recurrent at 0 [FUB14]. For example, if $\alpha = 1$, then $Z \sim \frac{2}{c} \cdot \text{BESQ}(2\delta)$, making 0 is polar.
- ♦ Weak limit (1) covers all critical offspring and immigration laws μ and ν in SDoA(1 + α) and SDoA(α), respectively, for $\alpha \in (0, 1)$.
- ♦ Weak limit (1) covers all critical finite-variance offspring laws μ . Reproduction μ has finite variance $\iff f''(1) < \infty \iff \alpha = 1 \& \exists \lim_{s \downarrow 0} \ell(s) < \infty$. Then, by balance condition $\frac{\ell(s)}{h(s)} \to 1$ as $s \to 0$ in Assumption (SL), we have finite-mean immigration ν .

Under (SL) and $\delta = \frac{d}{\alpha c} \in (0, 1)$, $\exists \kappa > 0$ s.t. regularly varying $c_n \coloneqq \kappa n \mathbb{P}(Z_1(n) = 0)$ satisfies $\left(\frac{1}{b_n} Z_1(\lfloor n \cdot \rfloor), \frac{1}{c_n} L_1(\lfloor n \cdot \rfloor)\right) \stackrel{d}{\to} (Z, L) \text{ as } n \to \infty.$ (1)

- \diamond Both (c_n) and Markov local time L defined up to a multiplicative constant.
- ♦ $\delta \in (0, 1)$ is necessary: if $\delta \ge 1$, Z is not point recurrent at 0 [FUB14]. For example, if $\alpha = 1$, then $Z \sim \frac{2}{c} \cdot \text{BESQ}(2\delta)$, making 0 is polar.
- ♦ Weak limit (1) covers all critical offspring and immigration laws μ and ν in SDoA(1 + α) and SDoA(α), respectively, for $\alpha \in (0, 1)$.
- ♦ Weak limit (1) covers all critical finite-variance offspring laws μ . Reproduction μ has finite variance $\iff f''(1) < \infty \iff \alpha = 1 \& \exists \lim_{s \downarrow 0} \ell(s) < \infty$. Then, by balance condition $\frac{\ell(s)}{h(s)} \to 1$ as $s \to 0$ in Assumption (SL), we have finite-mean immigration ν .
- ♦ If $\alpha = 1$ but $f''(1) = \infty$, offspring law μ has **infinite variance** but scaling limit (1) equals $\frac{2}{c} \cdot \text{BESQ}(2\delta)$ and its Markovian local time at 0.

Under (SL) and $\delta = \frac{d}{\alpha c} \in (0,1)$, $\exists \kappa > 0$ s.t. regularly varying $c_n \coloneqq \kappa n \mathbb{P}(Z_1(n) = 0)$ satisfies $\left(\frac{1}{b_n} Z_1(\lfloor n \cdot \rfloor), \frac{1}{c_n} L_1(\lfloor n \cdot \rfloor)\right) \stackrel{d}{\to} (Z, L) \text{ as } n \to \infty.$ (1)

- Both (c_n) and Markov local time L defined up to a multiplicative constant.
- ♦ $\delta \in (0,1)$ is necessary: if $\delta \ge 1$, Z is not point recurrent at 0 [FUB14]. For example, if $\alpha = 1$, then $Z \sim \frac{2}{c} \cdot \text{BESQ}(2\delta)$, making 0 is polar.
- ♦ Weak limit (1) covers all critical offspring and immigration laws μ and ν in SDoA(1 + α) and SDoA(α), respectively, for $\alpha \in (0, 1)$.
- ♦ Weak limit (1) covers all critical finite-variance offspring laws μ . Reproduction μ has finite variance $\iff f''(1) < \infty \iff \alpha = 1 \& \exists \lim_{s \downarrow 0} \ell(s) < \infty$. Then, by balance condition $\frac{\ell(s)}{h(s)} \to 1$ as $s \to 0$ in Assumption (SL), we have finite-mean immigration ν .
- ♦ If $\alpha = 1$ but $f''(1) = \infty$, offspring law μ has **infinite variance** but scaling limit (1) equals $\frac{2}{c} \cdot \text{BESQ}(2\delta)$ and its Markovian local time at 0.
- ♦ Substituting (μ, ν) with (μ, ν_n) , for immigration $\nu_n \coloneqq (1 p_n)\delta_0 + p_n \frac{1}{1 \nu(0)}\nu|_{\mathbb{N}\setminus\{0\}}$ with $p_n \uparrow 1$, produces $\frac{1}{b_n}Z_1^{(n)}(\lfloor n \cdot \rfloor) \stackrel{d}{\to} Z$ as in (1), but $\frac{1}{c'_n}L_1^{(n)}(\lfloor n \cdot \rfloor) \not\to L$ for any scaling $(c'_n)_{/17}$

- $\diamond \quad Z_1 = X_1 \circ C_1 + Y_1 \text{, where } C_1 = \sum_{0 \le j \le \cdot} Z_1(j) \text{ and } \mathsf{RW}(\tilde{\mu}) \ni X_1 \perp Y_1 \in \mathsf{RW}(\nu).$
- \diamond Let $L_1(X_1)$ and $L_1(Z_1)$ be the counting local times at 0 of X_1 and Z_1 .

- $\diamond \quad Z_1 = X_1 \circ C_1 + Y_1 \text{, where } C_1 = \sum_{0 \leq j < \cdot} Z_1(j) \text{ and } \mathsf{RW}(\tilde{\mu}) \ni X_1 \perp Y_1 \in \mathsf{RW}(\nu).$
- \diamond Let $L_1(X_1)$ and $L_1(Z_1)$ be the counting local times at 0 of X_1 and Z_1 .
- $\diamond \quad Z = X \circ C + Y, \text{ where } C = \int_0^{\cdot} Z(s) \, ds \text{ and } X \perp Y \text{ stable Lévy processes with Laplace exponents } \Psi(\lambda) = c \lambda^{1+\alpha} \text{ and } \Phi(\lambda) = d\lambda^{\alpha}.$
- \diamond Let L(X) and L(Z) be (Markovian) local times at 0 of X and Z.

- $\diamond \quad Z_1 = X_1 \circ C_1 + Y_1 \text{, where } C_1 = \sum_{0 \leq j < \cdot} Z_1(j) \text{ and } \mathsf{RW}(\tilde{\mu}) \ni X_1 \perp Y_1 \in \mathsf{RW}(\nu).$
- \diamond Let $L_1(X_1)$ and $L_1(Z_1)$ be the counting local times at 0 of X_1 and Z_1 .
- $\diamond \quad Z = X \circ C + Y, \text{ where } C = \int_0^{\cdot} Z(s) \, ds \text{ and } X \perp Y \text{ stable Lévy processes with Laplace exponents } \Psi(\lambda) = c \lambda^{1+\alpha} \text{ and } \Phi(\lambda) = d\lambda^{\alpha}.$
- \diamond Let L(X) and L(Z) be (Markovian) local times at 0 of X and Z.

Theorem (Septuple limit theorem in [MPUB25])

Under (SL) with $\delta = \frac{d}{\alpha c} \in (0, 1)$ and let (b_n) , (c_n) be regularly varying scaling sequences as above. Then there exists a regularly varying sequence (a_n) of index $1 + 1/\alpha$, such that

$$\begin{pmatrix} X_1(\lfloor nb_n \cdot \rfloor) \\ \overline{b_n}, \frac{L_1(X_1)(\lfloor nb_n \cdot \rfloor)}{a_{nb_n}}, \frac{Y_1(\lfloor n \cdot \rfloor)}{b_n}, \frac{C_1(\lfloor n \cdot \rfloor)}{nb_n}, \frac{X_1 \circ C_1(\lfloor n \cdot \rfloor)}{b_n}, \frac{Z_1(\lfloor n \cdot \rfloor)}{b_n}, \frac{L_1(Z_1)(\lfloor n \cdot \rfloor)}{c_n} \end{pmatrix} \xrightarrow{d} (X, L(X), Y, C, X \circ C, Z, L(Z)) \quad \text{as } n \to \infty.$$

- $\diamond \quad Z_1 = X_1 \circ C_1 + Y_1 \text{, where } C_1 = \sum_{0 \leq j < \cdot} Z_1(j) \text{ and } \mathsf{RW}(\tilde{\mu}) \ni X_1 \perp Y_1 \in \mathsf{RW}(\nu).$
- \diamond Let $L_1(X_1)$ and $L_1(Z_1)$ be the counting local times at 0 of X_1 and Z_1 .
- $\diamond \quad Z = X \circ C + Y, \text{ where } C = \int_0^{\cdot} Z(s) \, ds \text{ and } X \perp Y \text{ stable Lévy processes with Laplace exponents } \Psi(\lambda) = c \lambda^{1+\alpha} \text{ and } \Phi(\lambda) = d\lambda^{\alpha}.$
- \diamond Let L(X) and L(Z) be (Markovian) local times at 0 of X and Z.

Theorem (Septuple limit theorem in [MPUB25])

Under (SL) with $\delta = \frac{d}{\alpha c} \in (0, 1)$ and let (b_n) , (c_n) be regularly varying scaling sequences as above. Then there exists a regularly varying sequence (a_n) of index $1 + 1/\alpha$, such that

$$\left(\frac{X_1(\lfloor nb_n \cdot \rfloor)}{b_n}, \frac{L_1(X_1)(\lfloor nb_n \cdot \rfloor)}{a_{nb_n}}, \frac{Y_1(\lfloor n \cdot \rfloor)}{b_n}, \frac{C_1(\lfloor n \cdot \rfloor)}{nb_n}, \frac{X_1 \circ C_1(\lfloor n \cdot \rfloor)}{b_n}, \frac{Z_1(\lfloor n \cdot \rfloor)}{b_n}, \frac{L_1(Z_1)(\lfloor n \cdot \rfloor)}{c_n} \right) \xrightarrow{d} (X, L(X), Y, C, X \circ C, Z, L(Z)) \quad \text{as } n \to \infty.$$

Note four different spatial scales: b_n , c_n , nb_n and a_{nb_n} ,

- $\diamond \quad Z_1 = X_1 \circ C_1 + Y_1 \text{, where } C_1 = \sum_{0 \leq j < \cdot} Z_1(j) \text{ and } \mathsf{RW}(\tilde{\mu}) \ni X_1 \perp \!\!\!\!\perp Y_1 \in \mathsf{RW}(\nu).$
- \diamond Let $L_1(X_1)$ and $L_1(Z_1)$ be the counting local times at 0 of X_1 and Z_1 .
- $\diamond \quad Z = X \circ C + Y, \text{ where } C = \int_0^{\cdot} Z(s) \, ds \text{ and } X \perp Y \text{ stable Lévy processes with Laplace exponents } \Psi(\lambda) = c \lambda^{1+\alpha} \text{ and } \Phi(\lambda) = d\lambda^{\alpha}.$
- \diamond Let L(X) and L(Z) be (Markovian) local times at 0 of X and Z.

Theorem (Septuple limit theorem in [MPUB25])

Under (SL) with $\delta = \frac{d}{\alpha c} \in (0, 1)$ and let (b_n) , (c_n) be regularly varying scaling sequences as above. Then there exists a regularly varying sequence (a_n) of index $1 + 1/\alpha$, such that

$$\left(\frac{X_1(\lfloor nb_n \cdot \rfloor)}{b_n}, \frac{L_1(X_1)(\lfloor nb_n \cdot \rfloor)}{a_{nb_n}}, \frac{Y_1(\lfloor n \cdot \rfloor)}{b_n}, \frac{C_1(\lfloor n \cdot \rfloor)}{nb_n}, \frac{X_1 \circ C_1(\lfloor n \cdot \rfloor)}{b_n}, \frac{Z_1(\lfloor n \cdot \rfloor)}{b_n}, \frac{L_1(Z_1)(\lfloor n \cdot \rfloor)}{c_n} \right) \xrightarrow{d} (X, L(X), Y, C, X \circ C, Z, L(Z)) \quad \text{as } n \to \infty.$$

Note four different spatial scales: b_n , c_n , nb_n and a_{nb_n} , where (a_n) is $RV(1 + 1/\alpha)$.

2. Proofs: structure and ideas

The Septuple Limit Theorem follows directly from the Main Limit Theorem [MPUB25], stability of time-change equations for CBIs [CPGUB13] and the invariance principle for Local times [MUB22] applied to the downward skip-free random walk X_1 .

2. Proofs: structure and ideas

The Septuple Limit Theorem follows directly from the Main Limit Theorem [MPUB25], stability of time-change equations for CBIs [CPGUB13] and the invariance principle for Local times [MUB22] applied to the downward skip-free random walk X_1 .

Proof of the Main Limit Theorem [MPUB25] is based on the invariance principle for Local times [MUB22] applied to the BGWI Z_1 :

◇ The proof of Main Limit Theorem presents a new paradigm for the verification of the assumptions of the invariance principle for local times [MUB22] that might have applications in other settings (reinforced RWs, RWs in random environment, etc).

2. Proofs: structure and ideas

The Septuple Limit Theorem follows directly from the Main Limit Theorem [MPUB25], stability of time-change equations for CBIs [CPGUB13] and the invariance principle for Local times [MUB22] applied to the downward skip-free random walk X_1 .

Proof of the Main Limit Theorem [MPUB25] is based on the invariance principle for Local times [MUB22] applied to the BGWI Z_1 :

- ◇ The proof of Main Limit Theorem presents a new **paradigm** for the verification of the assumptions of the invariance principle for local times [MUB22] that might have applications in other settings (reinforced RWs, RWs in random environment, etc).
- \diamond The verification of the assumptions in [MUB22] for BGWI Z_1 is non-trivial, requiring novel results on branching processes and their scaling limits.

Invariance principle for local times [MUB22] in the language of BGWIs Theorem ([MUB22, Thm 1])

Assumption (SL) holds with $\delta = \frac{d}{\alpha c} \in (0,1)$ and $b_n^{\alpha} \sim n\ell(1/b_n)$ as $n \to \infty$. Let sequence of scaled BGWIs $(Z_n \stackrel{d}{=} Z_1(\lfloor n \cdot \rfloor)/b_n)$ be coupled with self-similar CBI Z. For any $t \in [0,\infty)$, let

$$g_t(Z)\coloneqq \sup\left\{s\leq t: Z(s)=0\right\} \quad \textit{and} \quad d_t(Z)\coloneqq \inf\left\{s>t: Z(s)=0\right\},$$

and the corresponding $g_t(Z_n)$ and $d_t(Z_n)$. Assume $Z_n \xrightarrow{\mathbb{P}} Z$ and, for every t > 0,

$$g_t(Z_n) \xrightarrow{\mathbb{P}} g_t(Z)$$
 and $d_t(Z_n) \xrightarrow{\mathbb{P}} d_t(Z)$, as $n \to \infty$. (2)

Then for $L_n(t) := |\{s \in \mathbb{N}/n : Z_n(s) = 0\} \cap [0, t]|$, some $\tilde{\kappa} > 0$ and $\tilde{c}_n := \frac{\tilde{\kappa}}{\mathbb{P}(d_{1/n}(Z_n) > 1)}$, the following limit in probability holds:

$$(Z_n, L_n/\tilde{c}_n) \xrightarrow{\mathbb{P}} (Z, L) \text{ as } n \to \infty.$$

Invariance principle for local times [MUB22] in the language of BGWIs Theorem ([MUB22, Thm 1])

Assumption (SL) holds with $\delta = \frac{d}{\alpha c} \in (0,1)$ and $b_n^{\alpha} \sim n\ell(1/b_n)$ as $n \to \infty$. Let sequence of scaled BGWIs $(Z_n \stackrel{d}{=} Z_1(\lfloor n \cdot \rfloor)/b_n)$ be coupled with self-similar CBI Z. For any $t \in [0,\infty)$, let

$$g_t(Z)\coloneqq \sup\left\{s\leq t: Z(s)=0\right\} \quad \textit{and} \quad d_t(Z)\coloneqq \inf\left\{s>t: Z(s)=0\right\},$$

and the corresponding $g_t(Z_n)$ and $d_t(Z_n)$. Assume $Z_n \xrightarrow{\mathbb{P}} Z$ and, for every t > 0,

$$g_t(Z_n) \stackrel{\mathbb{P}}{\to} g_t(Z)$$
 and $d_t(Z_n) \stackrel{\mathbb{P}}{\to} d_t(Z)$, as $n \to \infty$. (2)

Then for $L_n(t) := |\{s \in \mathbb{N}/n : Z_n(s) = 0\} \cap [0, t]|$, some $\tilde{\kappa} > 0$ and $\tilde{c}_n := \frac{\tilde{\kappa}}{\mathbb{P}(d_{1/n}(Z_n) > 1)}$, the following limit in probability holds:

$$(Z_n, L_n/\tilde{c}_n) \xrightarrow{\mathbb{P}} (Z, L) \text{ as } n \to \infty.$$

Task: for a coupling (Z_n, Z) , prove (2) and show $\tilde{c}_n \sim c_n = \kappa n \mathbb{P}(Z_1(n) = 0)$ as $n \to \infty$.

The applications in [MUB22] of the general form of Theorem on the previous slide for regenerative processes use path-wise arguments on the Skorokhod space to prove

$$g_t(Z_n) \xrightarrow{\mathbb{P}} g_t(Z) \quad \& \quad d_t(Z_n) \xrightarrow{\mathbb{P}} d_t(Z).$$

These path-wise arguments require:

The applications in [MUB22] of the general form of Theorem on the previous slide for regenerative processes use path-wise arguments on the Skorokhod space to prove

$$g_t(Z_n) \xrightarrow{\mathbb{P}} g_t(Z) \quad \& \quad d_t(Z_n) \xrightarrow{\mathbb{P}} d_t(Z).$$

These path-wise arguments require:

 \diamond downwards regular at zero limit process (CBI Z is not since it is non-negative).

The applications in [MUB22] of the general form of Theorem on the previous slide for regenerative processes use path-wise arguments on the Skorokhod space to prove

$$g_t(Z_n) \xrightarrow{\mathbb{P}} g_t(Z) \quad \& \quad d_t(Z_n) \xrightarrow{\mathbb{P}} d_t(Z).$$

These path-wise arguments require:

- \diamond downwards regular at zero limit process (CBI Z is not since it is non-negative).
- \diamond **downwards skip-free** pre-limit processes (scaled BGWIs Z_n are not!);

The applications in [MUB22] of the general form of Theorem on the previous slide for regenerative processes use path-wise arguments on the Skorokhod space to prove

$$g_t(Z_n) \xrightarrow{\mathbb{P}} g_t(Z) \quad \& \quad d_t(Z_n) \xrightarrow{\mathbb{P}} d_t(Z).$$

These path-wise arguments require:

- ♦ **downwards regular** at zero limit process (CBI Z is not since it is non-negative).
- \diamond **downwards skip-free** pre-limit processes (scaled BGWIs Z_n are not!);

A different approach is required for BGWIs!!

$$\begin{split} \mathbb{P}(|d_t(Z) - d_t(Z_n)| > \eta) &\leq \mathbf{I}_d + \mathbf{II}_d + \mathbf{III}_d \quad \text{and} \quad \mathbb{P}(|g_t(Z) - g_t(Z_n)| > \eta) \leq \mathbf{I}_g + \mathbf{II}_g + \mathbf{III}_g, \\ \mathbf{I}_d &\coloneqq \mathbb{P}(|d_t(Z) - d_t^{\varepsilon}(Z)| > \eta/3), \qquad \mathbf{I}_g &\coloneqq \mathbb{P}(|g_t(Z) - g_t^{\varepsilon}(Z)| > \eta/3), \\ \mathbf{II}_d &\coloneqq \mathbb{P}(|d_t^{\varepsilon}(Z) - d_t^{\varepsilon}(Z_n)| > \eta/3), \qquad \mathbf{II}_g &\coloneqq \mathbb{P}(|g_t^{\varepsilon}(Z) - g_t^{\varepsilon}(Z_n)| > \eta/3), \\ \mathbf{III}_d &\coloneqq \mathbb{P}(|d_t(Z_n) - d_t^{\varepsilon}(Z_n)| > \eta/3), \qquad \mathbf{III}_g &\coloneqq \mathbb{P}(|g_t(Z_n) - g_t^{\varepsilon}(Z_n)| > \eta/3), \\ \end{split}$$

$$\begin{split} \mathbb{P}(|d_t(Z) - d_t(Z_n)| > \eta) &\leq \mathbf{I}_d + \mathbf{II}_d + \mathbf{III}_d \quad \text{and} \quad \mathbb{P}(|g_t(Z) - g_t(Z_n)| > \eta) \leq \mathbf{I}_g + \mathbf{II}_g + \mathbf{III}_g, \\ \mathbf{I}_d &\coloneqq \mathbb{P}(|d_t(Z) - d_t^{\varepsilon}(Z)| > \eta/3), \qquad \mathbf{I}_g \coloneqq \mathbb{P}(|g_t(Z) - g_t^{\varepsilon}(Z)| > \eta/3), \\ \mathbf{II}_d &\coloneqq \mathbb{P}(|d_t^{\varepsilon}(Z) - d_t^{\varepsilon}(Z_n)| > \eta/3), \qquad \mathbf{II}_g \coloneqq \mathbb{P}(|g_t^{\varepsilon}(Z) - g_t^{\varepsilon}(Z_n)| > \eta/3), \\ \mathbf{III}_d &\coloneqq \mathbb{P}(|d_t(Z_n) - d_t^{\varepsilon}(Z_n)| > \eta/3), \qquad \mathbf{III}_g \coloneqq \mathbb{P}(|g_t(Z_n) - g_t^{\varepsilon}(Z_n)| > \eta/3). \end{split}$$

We need to prove

 $\lim_{\varepsilon \to 0} \limsup_{n \to \infty} P(n, \varepsilon) = 0, \quad \text{ where } \quad P(n, \varepsilon) \in \{ \mathbf{I}_d, \mathbf{II}_d, \mathbf{II}_d, \mathbf{I}_g, \mathbf{II}_g, \mathbf{III}_g \}.$

$$\mathbf{I}_d = \mathbb{P}(|d_t(Z) - d_t^{\varepsilon}(Z)| > \eta/3) \xrightarrow{\varepsilon \downarrow 0} 0 \quad \& \quad \mathbf{I}_g = \mathbb{P}(|g_t(Z) - g_t^{\varepsilon}(Z)| > \eta/3) \xrightarrow{\varepsilon \downarrow 0} 0$$

require quasi left continuity of CBI Z and that Z(s-) > 0 for any $g_t(Z) < s < d_t(Z)$.

$$\mathbf{I}_d = \mathbb{P}(|d_t(Z) - d_t^{\varepsilon}(Z)| > \eta/3) \xrightarrow{\varepsilon \downarrow 0} 0 \quad \& \quad \mathbf{I}_g = \mathbb{P}(|g_t(Z) - g_t^{\varepsilon}(Z)| > \eta/3) \xrightarrow{\varepsilon \downarrow 0} 0$$

require quasi left continuity of CBI Z and that Z(s-) > 0 for any $g_t(Z) < s < d_t(Z)$.

Limits of $II_d = \mathbb{P}(|d_t^{\varepsilon}(Z) - d_t^{\varepsilon}(Z_n)| > \eta/3)$ & $II_g = \mathbb{P}(|g_t^{\varepsilon}(Z) - g_t^{\varepsilon}(Z_n)| > \eta/3)$ require a coupling $((Z_n), Z)$ and lemma on the Skorokhod space D:

Lemma

If $f \in D$ satisfies $T_O(f) \leq \min\{T_C(f), T_C^-(f)\}$, where $O = [0, \varepsilon)$, $C = [0, \varepsilon]$ and $T_O = \inf\{t \geq 0 : f(t) \in O\}$, $T_C^- = \inf\{t \geq 0 : f(t-) \in C\}$, then for any $f_n \to f$ we have $T_O(f_n) \to T_O(f)$.

$$\mathbf{I}_d = \mathbb{P}(|d_t(Z) - d_t^{\varepsilon}(Z)| > \eta/3) \xrightarrow{\varepsilon \downarrow 0} 0 \quad \& \quad \mathbf{I}_g = \mathbb{P}(|g_t(Z) - g_t^{\varepsilon}(Z)| > \eta/3) \xrightarrow{\varepsilon \downarrow 0} 0$$

require quasi left continuity of CBI Z and that Z(s-) > 0 for any $g_t(Z) < s < d_t(Z)$.

Limits of $II_d = \mathbb{P}(|d_t^{\varepsilon}(Z) - d_t^{\varepsilon}(Z_n)| > \eta/3)$ & $II_g = \mathbb{P}(|g_t^{\varepsilon}(Z) - g_t^{\varepsilon}(Z_n)| > \eta/3)$ require a coupling $((Z_n), Z)$ and lemma on the Skorokhod space D:

Lemma

If $f \in D$ satisfies $T_O(f) \leq \min\{T_C(f), T_C^-(f)\}$, where $O = [0, \varepsilon)$, $C = [0, \varepsilon]$ and $T_O = \inf\{t \geq 0 : f(t) \in O\}$, $T_C^- = \inf\{t \geq 0 : f(t-) \in C\}$, then for any $f_n \to f$ we have $T_O(f_n) \to T_O(f)$.

 $\mathrm{II}_d: \ Z \text{ downwards regular at } \varepsilon \text{ \& Lemma } \implies |d_t^\varepsilon(Z) - d_t^\varepsilon(Z_n)| \xrightarrow{\mathsf{a.s.}} 0 \text{ as } n \uparrow \infty$

$$\mathbf{I}_d = \mathbb{P}(|d_t(Z) - d_t^{\varepsilon}(Z)| > \eta/3) \xrightarrow{\varepsilon \downarrow 0} 0 \quad \& \quad \mathbf{I}_g = \mathbb{P}(|g_t(Z) - g_t^{\varepsilon}(Z)| > \eta/3) \xrightarrow{\varepsilon \downarrow 0} 0$$

require quasi left continuity of CBI Z and that Z(s-) > 0 for any $g_t(Z) < s < d_t(Z)$.

Limits of $II_d = \mathbb{P}(|d_t^{\varepsilon}(Z) - d_t^{\varepsilon}(Z_n)| > \eta/3)$ & $II_g = \mathbb{P}(|g_t^{\varepsilon}(Z) - g_t^{\varepsilon}(Z_n)| > \eta/3)$ require a coupling $((Z_n), Z)$ and lemma on the Skorokhod space D:

Lemma

If $f \in D$ satisfies $T_O(f) \leq \min\{T_C(f), T_C^-(f)\}$, where $O = [0, \varepsilon)$, $C = [0, \varepsilon]$ and $T_O = \inf\{t \geq 0 : f(t) \in O\}$, $T_C^- = \inf\{t \geq 0 : f(t-) \in C\}$, then for any $f_n \to f$ we have $T_O(f_n) \to T_O(f)$.

$$\begin{split} &\mathrm{II}_d: \ Z \text{ downwards regular at } \varepsilon \text{ \& Lemma } \Longrightarrow |d_t^{\varepsilon}(Z) - d_t^{\varepsilon}(Z_n)| \xrightarrow{\mathsf{a.s.}} 0 \text{ as } n \uparrow \infty \\ &\mathrm{II}_g: \text{ time reverse } \hat{Z}(s) \coloneqq Z(\max\{t-s,0\}-), \text{ note that } g_t^{\varepsilon}(Z_n) = t - T_O(\hat{Z}_n) \text{ and} \\ &g_t^{\varepsilon}(Z) = t - T_O(\hat{Z}) \text{ and apply Lemma to } \hat{Z}_n \to \hat{Z} \text{ to get } |g_t^{\varepsilon}(Z) - g_t^{\varepsilon}(Z_n)| \xrightarrow{\mathsf{a.s.}} 0 \text{ as } n \uparrow \infty \end{split}$$

$$\operatorname{III}_{d} = \mathbb{P}(|d_{t}(Z_{n}) - d_{t}^{\varepsilon}(Z_{n})| > \eta/3) \& \operatorname{III}_{g} = \mathbb{P}(|g_{t}(Z_{n}) - g_{t}^{\varepsilon}(Z_{n})| > \eta/3)$$

Under Assumption (SL) with $\delta = \frac{d}{\alpha c} \in (0,1)$, for any $t \ge 0$ and $\varepsilon > 0$, we have

 $(g_t^\varepsilon(Z_n),g_t(Z_n)) \xrightarrow{d} (g_t^\varepsilon(Z),g_t(Z)) \quad \text{ and } \quad (d_t^\varepsilon(Z_n),d_t(Z_n)) \xrightarrow{d} (d_t^\varepsilon(Z),d_t(Z)) \quad \text{ as } n \to \infty.$

$$\operatorname{III}_{d} = \mathbb{P}(|d_{t}(Z_{n}) - d_{t}^{\varepsilon}(Z_{n})| > \eta/3) \& \operatorname{III}_{g} = \mathbb{P}(|g_{t}(Z_{n}) - g_{t}^{\varepsilon}(Z_{n})| > \eta/3)$$

Under Assumption (SL) with $\delta = \frac{d}{\alpha c} \in (0,1)$, for any $t \ge 0$ and $\varepsilon > 0$, we have

 $(g_t^{\varepsilon}(Z_n),g_t(Z_n)) \xrightarrow{d} (g_t^{\varepsilon}(Z),g_t(Z)) \quad \text{ and } \quad (d_t^{\varepsilon}(Z_n),d_t(Z_n)) \xrightarrow{d} (d_t^{\varepsilon}(Z),d_t(Z)) \quad \text{ as } n \to \infty.$

By [MPUB25, Thm 6] we get

$$g_t^\varepsilon(Z_n) - g_t(Z_n) \xrightarrow{d} g_t^\varepsilon(Z) - g_t(Z) \quad \text{and} \quad d_t(Z_n) - d_t^\varepsilon(Z_n) \xrightarrow{d} d_t(Z) - d_t^\varepsilon(Z) \quad \text{as } n \to \infty$$

and hence $\operatorname{III}_d = \mathbb{P}(|d_t(Z_n) - d_t^{\varepsilon}(Z_n)| > \eta/3) \xrightarrow{n\uparrow\infty} \mathbb{P}(|d_t(Z) - d_t^{\varepsilon}(Z)| > \eta/3) = \operatorname{I}_d$. Ditto for $\operatorname{III}_g \xrightarrow{n\uparrow\infty} \operatorname{I}_g$.

$$\operatorname{III}_{d} = \mathbb{P}(|d_{t}(Z_{n}) - d_{t}^{\varepsilon}(Z_{n})| > \eta/3) \& \operatorname{III}_{g} = \mathbb{P}(|g_{t}(Z_{n}) - g_{t}^{\varepsilon}(Z_{n})| > \eta/3)$$

Under Assumption (SL) with $\delta = \frac{d}{\alpha c} \in (0,1)$, for any $t \ge 0$ and $\varepsilon > 0$, we have

 $(g_t^{\varepsilon}(Z_n),g_t(Z_n)) \xrightarrow{d} (g_t^{\varepsilon}(Z),g_t(Z)) \quad \text{ and } \quad (d_t^{\varepsilon}(Z_n),d_t(Z_n)) \xrightarrow{d} (d_t^{\varepsilon}(Z),d_t(Z)) \quad \text{ as } n \to \infty.$

By [MPUB25, Thm 6] we get

$$g_t^\varepsilon(Z_n) - g_t(Z_n) \xrightarrow{d} g_t^\varepsilon(Z) - g_t(Z) \quad \text{and} \quad d_t(Z_n) - d_t^\varepsilon(Z_n) \xrightarrow{d} d_t(Z) - d_t^\varepsilon(Z) \quad \text{as} \ n \to \infty$$

and hence $\operatorname{III}_d = \mathbb{P}(|d_t(Z_n) - d_t^{\varepsilon}(Z_n)| > \eta/3) \xrightarrow{n\uparrow\infty} \mathbb{P}(|d_t(Z) - d_t^{\varepsilon}(Z)| > \eta/3) = I_d$. Ditto for $\operatorname{III}_g \xrightarrow{n\uparrow\infty} I_g$. We already know $I_d, I_g \xrightarrow{\varepsilon\downarrow\infty} 0$ finishing the proof.

$$\operatorname{III}_{d} = \mathbb{P}(|d_{t}(Z_{n}) - d_{t}^{\varepsilon}(Z_{n})| > \eta/3) \& \operatorname{III}_{g} = \mathbb{P}(|g_{t}(Z_{n}) - g_{t}^{\varepsilon}(Z_{n})| > \eta/3)$$

Under Assumption (SL) with $\delta = \frac{d}{\alpha c} \in (0,1)$, for any $t \ge 0$ and $\varepsilon > 0$, we have

 $(g_t^{\varepsilon}(Z_n),g_t(Z_n)) \xrightarrow{d} (g_t^{\varepsilon}(Z),g_t(Z)) \quad \text{ and } \quad (d_t^{\varepsilon}(Z_n),d_t(Z_n)) \xrightarrow{d} (d_t^{\varepsilon}(Z),d_t(Z)) \quad \text{ as } n \to \infty.$

By [MPUB25, Thm 6] we get

$$g_t^\varepsilon(Z_n) - g_t(Z_n) \xrightarrow{d} g_t^\varepsilon(Z) - g_t(Z) \quad \text{and} \quad d_t(Z_n) - d_t^\varepsilon(Z_n) \xrightarrow{d} d_t(Z) - d_t^\varepsilon(Z) \quad \text{as} \ n \to \infty$$

and hence $\operatorname{III}_d = \mathbb{P}(|d_t(Z_n) - d_t^{\varepsilon}(Z_n)| > \eta/3) \xrightarrow{n\uparrow\infty} \mathbb{P}(|d_t(Z) - d_t^{\varepsilon}(Z)| > \eta/3) = I_d$. Ditto for $\operatorname{III}_g \xrightarrow{n\uparrow\infty} I_g$. We already know $I_d, I_g \xrightarrow{\varepsilon\downarrow\infty} 0$ finishing the proof.

But how does one prove [MPUB25, Thm 6]?

(numbers next to lemmas, corollary, proposition and theorems correspond to those in the preprint [MPUB25])

YouTube Prob-AM

See eponymous videos Part 1: Results and Part 2: Proofs

YouTube Prob-AM

See eponymous videos Part 1: Results and Part 2: Proofs

Thank you for your attention!! [MPUB25] available on arXiv:2503.20923

References

- Ma. Emilia Caballero, José Luis Pérez Garmendia, and Gerónimo Uribe Bravo, A Lamperti-type representation of continuous-state branching processes with immigration, Ann. Probab. 41 (2013), no. 3A, 1585–1627.
- Clément Foucart and Gerónimo Uribe Bravo, *Local extinction in continuous-state branching processes with immigration*, Bernoulli **20** (2014), no. 4, 1819–1844.
- R. K. Getoor, *Excursions of a Markov process*, Ann. Probab. **7** (1979), no. 2, 244–266.
- Zenghu Li, A limit theorem for discrete Galton-Watson branching processes with immigration, J. Appl. Probab. **43** (2006), no. 1, 289–295.
- A. Mijatović, B. Povar, and G. Uribe Bravo, *Critical branching processes with immigration: scaling limits of local extinction sets*, arXiv:2503.20923 (2025).
- Aleksandar Mijatović and Gerónimo Uribe Bravo, *Limit theorems for local times and applications to SDEs with jumps*, Stochastic Process. Appl. **153** (2022), 39–56.
- R. S. Slack, A branching process with mean one and possibly infinite variance, Z.
 Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 139–145.