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BGWI and CBI processes

BGWI (Bienaymé-Galton-Watson process with immigration) is described
by two generating functions f and g, where f corresponds to regeneration
and g corresponds to immigration.

Under specific scalings (and possibly considering a sequence of processes)
BGWIs are known to converge to Continuous Branching processes with
immigration (CBI), see [Kawazu and Watanabe 1971].

2 / 22



BGWI and CBI processes

BGWI (Bienaymé-Galton-Watson process with immigration) is described
by two generating functions f and g, where f corresponds to regeneration
and g corresponds to immigration.

Under specific scalings (and possibly considering a sequence of processes)
BGWIs are known to converge to Continuous Branching processes with
immigration (CBI), see [Kawazu and Watanabe 1971].

2 / 22



CBI processes

In [Caballero, Pérez Garmendia, and Uribe Bravo 2013] it was shown that
a CBI process Z is a solution to a time-change equation:

Zt = X
(∫ t

0

Zsds
)
+ Yt, (1)

where Y is a subordinator and X is a spectrally positive Levy process with
finite mean.
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The discrete process

Consider the generating functions

f(s) := s+ c(1− s)α+1L(1− s) and g(s) := 1− d(1− s)αG(1− s),

where c, d > 0 and α ∈ (0, 1] and L(x) ∼ G(x) for x → 0 and L is slowly
varying at 0.

Note that the BGWI(f, g) is critical: f ′(1) = 1, and

f ′′(1) < ∞ iff g′(1) < ∞ iff α = 1 and G(0) < ∞.

Proposition

Let ηα be a r.v. with a tail P(ηα > x) ∼ dx−αG(x) as x → ∞. Then

g ∼ Pois(ηα) and f ∼ Be(1/Pois(ηα)) · (Pois(ηα) + 1).
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The scaling limit

Denote by z the BGWI(f, g). Define bn by bαn ∼ nL(1/bn) (as n → ∞) and let

Z
(n)
t :=

1

bn
z(⌊nt⌋). (2)

It holds that (in Skorokhod’s space)

Z(n) w→ Z, n → ∞,

where Z is an α-self-similar CBI: the regenerating and immigration mechanisms
are given by

R(q) = −cqα+1 and F (q) = dqα;

or, equivalently, Z satisfies the time-change equation Zt = X
(∫ t

0
Zsds

)
+ Yt

with Y being an α-stable subordinator and X being a 1 + α-stable spectrally
positive Levy process.
We assume that

δ :=
d

αc
∈ (0, 1). (3)

This assumption guarantees that 0 is a recurrent point of Z, [Foucart and
Uribe Bravo 2014].
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Plan

1 Yaglom limit: conditioning on non-extinction up till time u > 0.
2 Durrett’s extension to the meander.
3 Letting u → ∞.
4 Recognising the h-transform of the original process.
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Yaglom limit

Let d0(w) denote the hitting time of 0 for w:

d0(w) := inf{s > 0 : w(s) = 0}.

Consider

lim
n→∞

P
(

1

bn
z(n) ∈ A

∣∣∣ d0(z) > n

)
.

Theorem (Yaglom limit, [Mijatović, P., and Uribe Bravo 2025])

lim
n→∞

E
(
exp

(
−λ

z(n)

bn

) ∣∣∣ d0(z) > n

)
=

1

(1 + αcλα)
.

Compare to the similar limit for a BGW z̃, [Slack 1968]:

lim
n→∞

E
(
exp

(
−λ

z̃(n)

bn

) ∣∣∣ d0(z̃) > n

)
= 1−

(
αcλα

1 + αcλα

)1/α

.
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Yaglom limit extension to the whole excursion, general case

Consider a Markov chain (v(k))k≥0 on R and assume that
1 Scaling limit: for (bn)n and zn := v(0)/bn → z, it holds

Zzn
n := v(n·)/bn

w→ Zz.
2 Enough mass beyond 0: for t, z > 0, P(infs<t Z

z(t) > 0) > 0.
3 Convergence of hitting times of 0: tn → t > 0 and zn → z > 0, then

P(d0(Zzn
n ) > tn) → P(d0(Zz) > t).

4 Regularity of 0: tn → t > 0 and zn → 0, then P(d0(Zzn
n ) > tn) → 0.

Theorem (**[Durrett 1978])

Assume 1-4 hold. Fix u > 0 and let Z
(+,u)
n := (Z0

n | d0(Zn) > u). Then
1 ∃β > 0 such that P(d0(Zn) > u) ∼ n−βL∗(n) for a slowly varying L∗;
2 (Z

(+,u)
n (s))s∈[0,u] converges weakly (in D[0,∞)) to an inhomogeneous

Markov process Z(+,u).
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Yaglom limit extension to the whole excursion, general case

Define κu as Z
(+,u)
n (u)

w→ κu. By the self-similarlity of the limit, this will
satisfy κu := u1/ακ1. The transition density of Z(+,u) is given by:

for t > 0

P0(Z
(+,u)(t) ∈ dy) = (u/t)β P((t/u)1/ακu ∈ dy) Pz (d0(Z) > u− t) ;

for s < t < u and z > 0

P(Z(+,u)(t) ∈ dy | Z(+,u)(s) = z)

= Pz

(
Z(t− s) ∈ dy,
d0(Z) > t− s

)
Py(d0(Z) > u− t)

Pz(d0(Z) > u− s)
.
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Yaglom limit extension to the whole excursion, BGWI case

Theorem

Consider Z(+,u)
n := (z(⌊n·⌋)/bn | d0(z) > nu). There exists an inhomogeneous

Markov process Z(+,u) such that

Z(+,u)
n

w→ Z(+,u), as n → ∞.

Constant β is given by [Mijatović, P., and Uribe Bravo 2025] and it is equal to
β := 1− δ.
From Yaglom limit we find that κu is defined as

Eeλκu =
1

(1 + αcuλα)
.

Define a random variable κ as Ee−λκ = (1 + λα)−1. Then

P0(Z
(+,u)(t) ∈ dy) = (u/t)1−δ P((αct)1/α κ ∈ dy)Py(d0(Z) > u− t).
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Letting u → ∞: part I

For s < t < u and z > 0

lim
u→∞

P(Z(+,u)(t) ∈ dy | Z(+,u)(s) = z)

= Pz

(
Z(t− s) ∈ dy,
d0(Z) > t− s

)
lim

u→∞

Py(d0(Z) > u− t)

Pz(d0(Z) > u− s)
.

Proposition (by-product of [Mijatović, P., and Uribe Bravo 2025])

Let A ∼ Arcsin(δ) ∼ Beta(δ, 1− δ) and independent E ∼ Exp(1). Then

d0(Z
z)

d
=

zα

αc

E−α

A
.

For h(z) = zα(1−δ), we have

Pz(d0(Z) > u) ∼ Γ(1− α)

Γ(δ)Γ(2− δ)

h(z)

(αcu)1−δ
, as u → ∞.

Hence

P(Z(+,u)(t) ∈ dy | Z(+,u)(s) = z) → Pz(Z(t−s) ∈ dy, d0(Z) > t−s) h(y)/h(z).
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Theorem

There exists a (time-homogeneous) Markov process Z(+), strictly positive on
(0,∞), such that the finite-dimensional distributions of Z(+,u) converge to
those of Z(+) as u → ∞:

Z(+,u) fdd→ Z(+), as u → ∞. (4)

The process Z(+) is an h-transform of Z with h(z) := zα(1−δ) and it has the
following transition densities:
for y > 0, z > 0, 0 < t < u

Pz(Z
(+)(t) ∈ dy) = Pz(Z(t) ∈ dy, d0(Z) > t)

h(y)

h(z)
; (5)

for y > 0 and z > 0 and 0 < s < t

P(Z(+)(t) ∈ dy |Z(+)(s) ∈ dz) = Pz(Z
(+)(t− s) ∈ dy);

for z = 0 and t > 0

P0(Z
(+)(t) ∈ dy) =

Γ(1− α)

Γ(δ)Γ(2− δ)

h(y)

(αct)1−δ
P((αct)1/ακ ∈ dy). (6)
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Letting u → ∞: h-transform

To see that the function h is a Doob h-transform we need to verify that it is
excessive for the process killed at the hitting time of 0, i.e.,
Ez [h(Z(t)); d0(Z) > t] ↑ h(z) as t ↓ 0. , we note that for any z > 0

Ez

[
h(Z(t))

h(z)
; d0(Z) > t

]
= P(+)

z [1] ≤ 1, (7)

where P(+)
z is the probability measure associated with Z(+) issued from z. As

t ↓ 0, by Lebesgue’s Dominated convergence theorem, we see that
Ez [h(Z(t)); d0(Z) > t] ↑ h(z) as required.
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Lamperti transform of the self-similar CBI

Consider the Lamperti transform of Z

Z(t)1{d0(Z)>t} = zeξ(τ(tz
−α)), where τt := inf{s > 0 :

∫ s

0

eαξ(u)u > t}. (8)

Since Z hits zero continuously, limt→∞ ξt = −∞.

Theorem

The Laplace transform of ξ is given by

Ψ(λ) := log
(
Ee−λξ

)
=

Γ(α+ λ)

Γ(λ)
αc(1− δ + λ/α).

Moreover, we find that Eeα(1−δ)ξ = 1, i.e., the Cramer’s constant of ξ is
α(1− δ) and also

(
eα(1−δ)ξt

)
t≥0

is a martingale.
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Theorem (Volkonskii’s theorem)

The generator of Z and the generator of ξ are related through

LZf(z) = z−α
Leξf(z) = z−α

Lξf̃(log(z)),

where f̃(z) := f(ez).

Being an h-transform implies that h(Z(t))1{d0(Z)>t} is a supermartingale. It is
actually a martingale.

Theorem

The process
(
h(Z(t))1{d0(Z)>t}

)
t
=

(
h(zeξ(τ(tz

−α)))
)
t

is a martingale.
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Behaviour of the trajectories

From [Bertoin and Doney 1994], as x → ∞

Pz( max
t≤d0(Z)

Z(t) > x) = P(zmax
t≥0

eξ(t) > x) ∼ C1/C2

α(1− δ)

h(z)

h(x)
,

where C1 := − log P(H1 < ∞) and C2 := E(H1e
α(1−δ)H1 ;H1 < ∞) with

H being the ascending ladder height process of ξ.

As x → ∞
P0(Z

(+)(t) > x) ∼ sin(πδ)

πδ(1− δ)
(αct)δx−αδ.
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Scale function for some spectrally positive processes

Following [Noba 2023], we can define the q-scale function of a spectrally
positive process Z as

W
(q)
Z (x, y) =

{
1/Nx

[
e−qT−

y

]
, y ≤ x,

0, y > x,

for x, y in (0,∞); where Nx is the excursion measure (from x) and T−
y is the

hitting time of the [0, y].

Ex

[
e−qT−

a ;T−
a < T+

b

]
=

W
(q)
Z (b, x)

W
(q)
Z (b, a)
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Scale function for a self-similar CBI

By [Noba 2023], we see that the q-scale function (W
(q)
Z (x, y))x of Z, for q ≥ 0,

is the unique solution to the Volterra integral equation

f(x) = xα−1Wξ(log(y/x)) + xα−1q

∫
(x,y)

f(x′)Wξ(log
(
x′/x

)
)dx′.

In particular, for the 0-scale function of Z is immediately given by

WZ(x, y) = xα−1Wξ(log(y/x))

Proposition
The 0-scale function of ξ is given by

Wξ(x) =
e−α(1−δ)x

Γ(1 + α)c(1− δ)

∫ 1−e−x

0

uα−1(1− u)−1−α(1−δ)u

=
e−α(1−δ)x(1− e−x)α

Γ(1 + α)αc(1− δ)
2F1(α, 1 + α(1− δ); 1 + α; 1− e−x).

18 / 22



Scale function for a self-similar CBI

By [Noba 2023], we see that the q-scale function (W
(q)
Z (x, y))x of Z, for q ≥ 0,

is the unique solution to the Volterra integral equation

f(x) = xα−1Wξ(log(y/x)) + xα−1q

∫
(x,y)

f(x′)Wξ(log
(
x′/x

)
)dx′.

In particular, for the 0-scale function of Z is immediately given by

WZ(x, y) = xα−1Wξ(log(y/x))

Proposition
The 0-scale function of ξ is given by

Wξ(x) =
e−α(1−δ)x

Γ(1 + α)c(1− δ)

∫ 1−e−x

0

uα−1(1− u)−1−α(1−δ)u

=
e−α(1−δ)x(1− e−x)α

Γ(1 + α)αc(1− δ)
2F1(α, 1 + α(1− δ); 1 + α; 1− e−x).

18 / 22



Scale function of ξ: proof

ξ is a Lévy process hence the scale function satisfies

W
(q)
ξ (x− y) = W

(q)
ξ (x, y) and

∫ ∞

0

e−λxW
(q)
ξ (x)dx =

1

Ψ(λ)− q
.

For q = 0, we compute

Wξ(x) = L
−1

[
1/Γ(1 + α)

c(1− δ)

Γ(λ)Γ(α)

Γ(α+ λ)

α(1− δ)

α(1− δ) + λ

]
(x).

Finally, recall the Beta function∫ ∞

0

e−λx(1− e−x)α−1x =
Γ(λ)Γ(α)

Γ(λ+ α)
.
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Thank you for your attention!
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