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Introduction

Let (Zt , t ≥ 0) be the size of a population evolving in continuous
time and space along the dynamics :

branching : each individual reproduces or dies independently
with a same law (classical CB’s dynamics).

quadratic competition : pairwise fights at constant rate
c ≥ 0 (quadratic negative drift).

dZt = ≪ CB dynamics ≫ −c

2
Z 2
t dt.

The competition breaks the branching property.

The process Z has been introduced by Lambert (2005) and is
called logistic CB process (LCB).
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Let Ψ be a branching mechanism :

Ψ(x) :=
σ2

2
x2 − γx +

∫ ∞

0

(
e−xy − 1 + xy1{y≤1}

)
π(dy) (1)

with σ ≥ 0, γ ∈ R and π a Lévy measure.

Definition/Theorem

An LCB(Ψ, c) is solution to the stochastic equation :

Zt = z + σ

∫ t

0

√
ZsdBs + γ

∫ t

0

Zsds +

∫ t

0

∫ Zs−

0

∫ ∞

1

yM(ds,du,dy)

+

∫ t

0

∫ Zs−

0

∫ 1

0

yM̄(ds,du,dy)− c

2

∫ t

0

Z 2
s ds, (2)

with B a Brownian motion,M an indep. PRM with intensity dsduπ(dy)
and

M̄(ds,du,dy) :=M(ds,du,dy)− dsduπ(dy).
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Denote by Pz the law of Z on the canonical space.

Aim : Given an LCB process Z satisfying

Pz(Zt −→
t→∞

0) = 1 (almost-sure asymptotic extinction),

we wish to condition the process on the negligible event

S := {Zt −→
t→∞

0}c .

! The event S being a Pz -null set, there is not a unique way to
define such a conditioning !
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(1) When there is extinction in finite time as, i.e.

{Zt −→
t→∞

0} = {ζ0 <∞},

with ζ0 := inf{t > 0 : Zt = 0}, we could seek a conditioning
with the notion of Q-process :

“ lim ”
s→∞

Pz(Λ|ζ0 > t + s), ∀Λ ∈ F0
t .

(2) We could also try to force the process to go above any levels
before being close to 0, i.e. set ζ+b := inf{t > 0 : Zt > b} and
look at :

“ lim ”
b→∞

Pz

(
Λ|ζ0 > ζ+b

)
, ∀Λ ∈ F0

t .

Those methods do not seem to apply to LCBs without strong

assumptions on Ψ.

We will approach the problem in a different way.
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Extinction and total progeny

We call total progeny,

J :=

∫ ∞

0
Ztdt.

Proposition (F., Rivero, Winter 24+ (c > 0), Bingham 75 (c = 0))

The following identity holds

{Zt −→
t→∞

0} = {J <∞}.

J <∞ Pz -p.s. iff

{
Ψ′(0+) ≥ 0 if c = 0,

H if c > 0.

Ez(J) <∞ iff

{
Ψ′(0+) > 0 if c = 0,

Ψ(∞) =∞ &
∫∞

log y π(dy) <∞ if c > 0.
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We will force the total progeny J to be large. More precisely, it will
exceed arbitrarily large exponential r.v’s :

P↑
z(·, t < ζ) = lim

θ→0
Pz(·, Jt ≤ e/θ|J > e/θ)

with Jt :=
∫ t
0 Zsds and e an exponential r.v. of parameter 1

independent from Z .

→ Method of exponentials ≪ classical ≫ by now in the theory of Lévy

processes (Chaumont, Doney 2005, Kyprianou et al. 2017)

We denote the lifetime :

ζ := inf{t > 0 : Zt− or Zt /∈ [0,∞)}.

We will see that ζ <∞, P↑
z − a.s..
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Construct. of LCB and proof of the proposition

The generator of the LCB Z takes the form :

L f (z) := zLΨf (z)− c

2
z2f ′(z)

with LΨ the generator of a Lévy process Y of Laplace exponent Ψ.

Factorization :

L f (z) = z
(
LΨf (z)− c

2
zf ′(z)

)
=: zG f (z)

Let Js :=
∫ s
0 Zudu, J∞ = J and the random clock :

Ct := inf{s ≥ 0 : Js > t}
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Lamperti’s Transformation : The time-changed process

(Rt := ZCt , t ≤ J∞)

is a positive Markov process with generator G , it satisfies

dRt = dYt − c
2Rtdt, t ≤ σ0

where σ0 := inf{t > 0 : Rt = 0}.

→ By the time change, Zt = RJt ,∀t ≥ 0, σ0 = J∞ = J, and

{J <∞} = {σ0 <∞} = {Zt −→
t→∞

0}.

Asymptotic Extinction Condition :

H : Ψ(∞) =∞ and E :=
∫ x0
0

1
u e

∫ x0
u

2Ψ(v)
cv

dvdu =∞.
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Examples satisfying H

Fact :∫
0
Ψ(x)
x dx > −∞⇐⇒

∫∞
log yπ(dy) <∞ =⇒ E =∞.

Stable and Neveu mechanisms :

Ψ(x) := axα − γx , ∀x ≥ 0, for α ∈ (1, 2], γ ∈ R, a > 0,

Ψ(x) := x log x , ∀x ≥ 0

Let α ∈ (0, c/2], a > 0, β ∈ [1, 2] and Ψ such that

Ψ(x) ∼
x→0
−α/ log(1/x) and Ψ(x) ∼

x→∞
axβ.

NB : here
∫
0
|Ψ(x)|

x dx =∞.



Introduction Asymptotic Extinction and total progeny Without competition With competition Study of the semigroup

Without competition : (c = 0)

Theorem (F., Rivero, Winter 24+)

Let Ψ (sub)-critical : ϱ := Ψ′(0+) ≥ 0 (⇐⇒ J <∞ Pz -a.s.).

1 The function h(z) = z is excessive and ∀z > 0,

P↑
z(Λ, t < ζ) := Ez

(
Zt

z
1Λ

)
= lim

θ→0
Pz

(
Λ, Jt ≤ e/θ

∣∣J ≥ e/θ) .
If ϱ = 0, Ez(J) =∞, Z martingale, ζ =∞, P↑

z -a.s.
If ϱ > 0, Ez(J) <∞, Z supermartingale, ζ <∞, P↑

z -a.s.

2 (Z ,P↑
z) satisfies

Zt = z +≪ CB(Ψ) dynamics ≫

+ σ2t +

∫ t

0

∫ ∞

0

yI(ds,dy), t < ζ,

with I a PRM of intensity ds yπ(dy) and ζ
Law
= Exp(ϱ).
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The additional term(
σ2t +

∫ t

0

∫ ∞

0
yI(ds, dy), t ≥ 0

)
is a subordinator of Laplace exponent Ψ′.

→ immigration dynamics independent on the population size,

→ The process (Z ,P↑
z) is a CBI with mechanisms Ψ and Ψ′.

If there is extinction in finite time, (NASC :
∫∞ du

Ψ(u) <∞),

(Z ,P↑
z)

Law
= Q-process killed at an indep. time ∼ Exp(ϱ)

The process (Z ,P↑
z) starts from z = 0 and 0 is interpreted as

an immortal individual.
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With competition : looking for an excessive function

We work from now on under the hypothesis H.

Theorem (F., Rivero, Winter 24+)

Let x0 > 0 fixed. Set

∀z ∈ [0,∞), h(z) :=

∫ ∞

0
(1− e−xz)

=:s(dx)︷ ︸︸ ︷
1

x
e
−

∫ x
x0

2Ψ(u)
cu

du
dx .

1 h is of Bernstein form , and

h(0) = 0, h(∞) =∞, h′(0) <∞ et
∫∞

h(y)π(dy) <∞.

2 ∀z ≥ 0,
L h(z) = − cℓ

2 z ≤ 0

with ℓ := exp
(∫ x0

0
2Ψ(u)
cu du

)
≥ 0, and

ℓ > 0 iff
∫∞

log y π(dy) <∞.
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Study of the h-transformed process(
h(Zt), t ≥ 0

)
is a Pz -supermartingale and we define :

1{t<ζ}dP
↑
z := h(Zt)

h(z) dPz , on F0
t , ∀t ≥ 0 and z > 0,

with ζ the lifetime of (Z ,P↑
z) and ∞ is the cemetery state.

Theorem (F., Rivero, Winter 24+)

1 ∀z > 0, the law P↑
z satisfies,

P↑
z(Λ, t < ζ) = lim

θ→0
Pz

(
Λ, Jt ≤ e/θ

∣∣J ≥ e/θ
)
, ∀Λ ∈ Ft ,∀t ≥ 0

2 (Z ,P↑
z) is a Feller process, ζ <∞ P↑

z -a.s., and
3

P↑
z

(
inf

0≤s<ζ
Zs ≤ a

)
=

h(a)

h(z)
, ∀z > a ≥ 0.

In particular, inf
0≤t<ζ

Zt > 0, P↑
z -a.s. for all z > 0.
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For all z > 0 and y > 0, let

b(z) := z
h′(z)

h(z)
, q(z , y) :=

z

h(z)

(
h(z+y)−h(z)

)
and k(z) :=

cℓ

2

z

h(z)
.

Theorem (F., Rivero, Winter 24+)

(Z ,P↑
z) has same law as the weak solution of the stochastic

equation below, killed at time ζk := inf{t > 0 :
∫ t
0 k(Zs)ds ≥ e}.

Zt =z+≪ LCB(Ψ, c) dynamics ≫

+ σ2

∫ t

0

b(Zs)ds +

∫ t

0

∫ q(Zs−,y)

0

∫ ∞

0

yN (ds,du,dy), t < ζ,

where ζ is the lifetime, e is a standard exponential r.v., N is a
PRM of intensity ds du π(dy), everything is mutually indep.

→ size-dependent immigration, see also Z. Li’s work (2019).
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Starting from zero : immortal individual

Theorem (F., Rivero, Winter 24+)

P↑
z =⇒
z→0+

P↑
0, in Skorokhod’s sense,

with P↑
0 s.t. P↑

0

(
Z0 = 0,∃t > 0 : ∀s ≥ t,Zs > 0

)
= 1.

(Z ,P↑
0) is weak solution to the SDE with z = 0, where b, q, k

are defined at 0 by :

b(0) := 1, ∀y > 0, q(0, y) :=
h(y)

h′(0)
, and k(0) :=

cℓ

2

1

h′(0)
.
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Study of (Z ,Pz) and (Z ,P↑z)

We use two duality relationships.

(Z ,L )
Laplace dual←→ (U,A )

Siegmund dual←→ (V ,G )

Ez(e
−xZt ) = Ex(e

−zUt ) and Px(Ut > y) = Py (x > Vt)

with U et V diffusions, weak solutions to

dUt =
√
cUtdBt −Ψ(Ut)dt, U0 = x

dVt =
√
cVtdBt +

(
c/2 + Ψ(Vt)

)
dt, V0 = y .

We call V the bidual process of Z .

H “=” NASC (Feller’s tests) for Vt −→
t→∞

∞ a.s.
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By combining the dualities, we get

Ez(e
−xZt ) =

∫ ∞

0
ze−zyPy (Vt > x)dy . (3)

The scale function of V vanishing at ∞ is

S(y) :=
∫∞
y s(dx) with s(dx) = 1

x e
−

∫ x0
x

2Ψ(u)
cu

du

h(z) =

∫ ∞

0
ze−zyS(y)dy and Ez

(
h(Zt)

)
=

∫ ∞

0
ye−zyEy

(
S(Vt)

)
dy .

Lemma (F., Rivero, Winter 24+)(
h(Zt), t ≥ 0

)
under Pz ,

is a strict supermartingale (i.e. this is not a local martingale)
when∫∞

log y π(dy) <∞ (⇐⇒ ℓ > 0⇐⇒ Ez(J) <∞),

is a strict local martingale (i.e. this is not a martingale) when∫∞
log y π(dy) =∞ (⇐⇒ ℓ = 0⇐⇒ Ez(J) =∞).
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About h-transforms and locally harmonic functions

If T is an (F0
t )t≥0-stopping time then for all A ∈ F0

t et z ∈ (0,∞),

P↑
z(A,T < ζ) =

1

h(z)
Ez (h(ZT )1A) . (4)

Three different situations :

1 If (h(Zt), t ≥ 0) is a Pz -martingale, then (Z ,P↑
z) has an

infinite lifetime : ζ =∞, P↑
z -a.s.

2 If (h(Zt), t ≥ 0) is a Pz - strict supermartingale (i.e. this is not

a local martingale), (Z ,P↑
z) has a finite lifetime and it is killed

with positive probability. One has P↑
z(Zζ− <∞) > 0.

3 If (h(Zt), t ≥ 0) is a Pz - strict local martingale (i.e. this is

not a true martingale), (Z ,P↑
z) has a finite lifetime but is not

killed. It explodes : Zζ− =∞, P↑
z -a.s..
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Many thanks !
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