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The model

Let T be a supercritical Galton—Watson tree with no leaves, with
offspring law ¢ satisfying E[¢%] < oo for some o > 1. Let u > 1 be
the mean number of offspring, and o the root.

(no leaves means almost sure survival - convenient)
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The model

Let T be a supercritical Galton—Watson tree with no leaves, with
offspring law ¢ satisfying E[¢%] < oo for some o > 1. Let u > 1 be
the mean number of offspring, and o the root.

We consider Bernoulli percolation on T: each edge is
independently open with probability p, or closed with probability
1 — p. We want to study the root cluster.



Percolation on T

As usual, we define:

pc = inf{p > 0:IP’(0<L>OO) > 0}.



What is p.?
Let C denote the root cluster (the blue structure).

Observation: C has the law of a Galton-Watson tree.
Offspring law: first sample N ~ &, then take Binomial(N, p).

Hence: ]P’(o LA oo) > 0 iff mean > 1, i.e. iff E[Np] > 1.
Hence p. = 1/p.
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as the connection probability after sampling both T and its
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What is p.?

This is an annealed result. Meaning: we interpreted P(0 «— o0)
as the connection probability after sampling both T and its
percolation configuration.

Another point of view: for a given realisation of T, we can set

pc(T):inf{p>0:PT<o<L>oo> >0},

where P (+) denotes the law of percolation on the explicit tree T.

Question: is it true that p.(T) = 1/u for almost every realisation
of T?
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Overall p. = 1/2 since for p < 1/2,
1 1
]P’(o@oo) = E]P)T2 <0<L>oo> —|—§IP’T1 (o@oo) =0,
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Consider the random tree T which is equal to T, the 1-regular
tree, with prob 1/2, and Ty, the 2-regular tree, with prob 1/2.

O

pc(Tl) =1 pc(T2) = 1/2

pe = 1/2, but it is not true that p.(T) = 1/2 almost surely.



Example of a random tree where there is a difference

Consider the random tree T which is equal to T, the 1-regular
tree, with prob 1/2, and Ty, the 2-regular tree, with prob 1/2.

O

pc(Tl) =1 pc(T2) = 1/2

pe = 1/2, but it is not true that p.(T) = 1/2 almost surely.

For our supercritical GW: p. = 1/, almost surely (Lyons 1990).



Quenched vs annealed results: notation

T, = n*h generation of T, C = cluster of 0, Y, = |C N T,|,
C>, = C conditioned to have size n, W = lim %

P=lawof T
P+ = law of percolation on T, given T
P =P x Py, annealed law



Quenched vs annealed results - finite variance
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C>, = C conditioned to have size n, W = lim %

Annealed Quenched
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P(|C| > n) ~ c'n~1/?
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The CRT

Pictures by lgor Kortchemski and Laurent Ménard.



Quenched vs annealed results - finite variance

T, = n'" generation of T, C = clusterof 0, Y, = |[CN T,|, Con=C
conditioned to have size n, W = lim % [AV24], [AL25].
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Quenched vs annealed results - finite variance

T, = nt" generation of T, C = cluster of 0, Y,, = |ICNT,, GGh=C
conditioned to have size n, W = lim Zz. [AV24], [AL25].
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Quenched
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PT(O LN T,,) ~W.enlas. ¥t

*proved by Michelen (2019) under higher moment assumptions.
*also obtained by Berger-Ayuso Ventura (2024).
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Quenched vs annealed results - stable analogues

Stable tails on offspring law: &(x,00) ~ cx™%, where a € (1,2).
T, = nt generation of T, C = cluster of 0, Y,, = ICNT,, GGp=C
conditioned to have size n, W = lim Z&. [AV24], [AL25].
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Stable trees

Pictures by Igor Kortchemski.
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Pictures by lgor Kortchemski and Laurent Ménard.



Quenched vs annealed results - finite variance

T, = n*h generation of T, C = cluster of 0, Y, = |C N T,|,
C>p = C conditioned to have size n, W = lim % [AV24], [AL25].
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*proved by Michelen (2019) under higher moment assumptions.
*also obtained by Berger-Ayuso Ventura (2024).



Extension to critical percolation on hyperbolic random

planar maps??

C = cluster of 0, C>, = C conditioned to have size n,
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Image by Gourab Ray.



Extension to critical percolation on hyperbolic random
planar maps??

C = cluster of 0, C>, = C conditioned to have size n.
Annealed Quenched
pc is explicit (Ray 2014)
P(Height(C) > n) ~ cn™! *
P(|C| > n) ~ c'n~1/2 *

d
(Con 20, Lpin) 4 CRT *
*A.-Croydon 2023.



Thank you!!

. S




