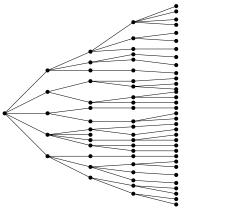
Quenched critical percolation on Galton–Watson trees

Eleanor Archer, Paris Dauphine University

Joint works with Quirin Vogel and Tanguy Lions

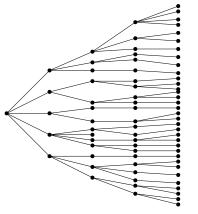
Branching and Persistence, Angers, April 2025

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ satisfying $\mathbb{E}[\xi^{\alpha}]<\infty$ for some $\alpha>1$. Let $\mu>1$ be the mean number of offspring, and ${\bf o}$ the root.



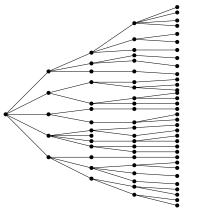
(no leaves means almost sure survival - convenient)

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ satisfying $\mathbb{E}[\xi^{\alpha}]<\infty$ for some $\alpha>1$. Let $\mu>1$ be the mean number of offspring, and ${\bf o}$ the root.



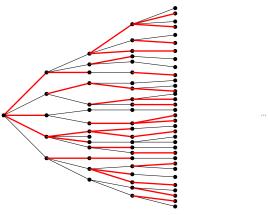
Important fact: let Z_n be the number of individuals at generation n. Then \exists r.v. W, supported on $(0,\infty)$, such that, a.s., $\frac{Z_n}{\mu^n} \to W$.

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ satisfying $\mathbb{E}[\xi^{\alpha}]<\infty$ for some $\alpha>1$. Let $\mu>1$ be the mean number of offspring, and ${\bf o}$ the root.



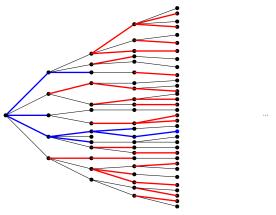
We consider **Bernoulli percolation** on T: fix $p \in (0,1)$, and each edge is independently open with probability p, or closed with probability 1-p.

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ satisfying $\mathbb{E}[\xi^{\alpha}]<\infty$ for some $\alpha>1$. Let $\mu>1$ be the mean number of offspring, and ${\bf o}$ the root.



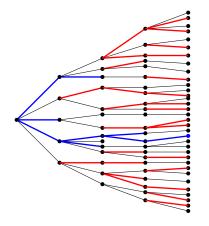
We consider Bernoulli percolation on T: each edge is independently open with probability p, or closed with probability 1-p.

Let T be a supercritical Galton–Watson tree with no leaves, with offspring law ξ satisfying $\mathbb{E}[\xi^{\alpha}]<\infty$ for some $\alpha>1$. Let $\mu>1$ be the mean number of offspring, and ${\bf o}$ the root.



We consider Bernoulli percolation on T: each edge is independently open with probability p, or closed with probability 1-p. We want to study the root cluster.

Percolation on T



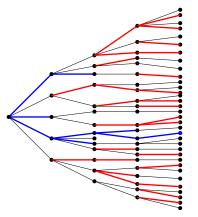
As usual, we define:

$$p_c = \inf\{p > 0 : \mathbb{P}\Big(\mathbf{o} \overset{p}{\longleftrightarrow} \infty\Big) > 0\}.$$

Let *C* denote the root cluster (the blue structure).

Observation: C has the law of a Galton-Watson tree.

Offspring law: first sample $N \sim \xi$, then take Binomial(N, p).



Hence:
$$\mathbb{P}\left(\mathbf{o} \overset{p}{\longleftrightarrow} \infty\right) > 0$$
 iff mean > 1 , i.e. iff $\mathbb{E}[Np] > 1$. Hence $p_c = 1/\mu$.

This is an **annealed** result. Meaning: we interpreted $\mathbb{P}(\mathbf{o}\longleftrightarrow\infty)$ as the connection probability after sampling both T and its percolation configuration.

This is an **annealed** result. Meaning: we interpreted $\mathbb{P}(\mathbf{o}\longleftrightarrow\infty)$ as the connection probability after sampling both T and its percolation configuration.

Another point of view: for a given realisation of T, we can set

$$p_c(T) = \inf \left\{ p > 0 : \mathbb{P}_T \left(\mathbf{o} \stackrel{p}{\longleftrightarrow} \infty \right) > 0 \right\},$$

where $\mathbb{P}_{\mathcal{T}}(\cdot)$ denotes the law of percolation on the explicit tree \mathcal{T} .

This is an **annealed** result. Meaning: we interpreted $\mathbb{P}(\mathbf{o}\longleftrightarrow\infty)$ as the connection probability after sampling both T and its percolation configuration.

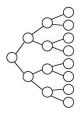
Another point of view: for a given realisation of T, we can set

$$p_c(T) = \inf \left\{ p > 0 : \mathbb{P}_T \left(\mathbf{o} \stackrel{p}{\longleftrightarrow} \infty \right) > 0 \right\},$$

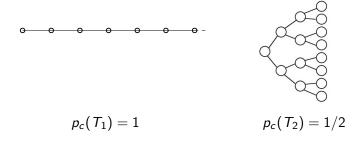
where $\mathbb{P}_{\mathcal{T}}(\cdot)$ denotes the law of percolation on the explicit tree \mathcal{T} .

Question: is it true that $p_c(T) = 1/\mu$ for almost every realisation of T?

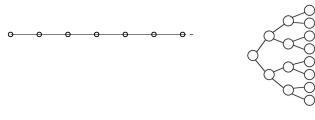
Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob 1/2, and T_2 , the 2-regular tree, with prob 1/2.



Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob 1/2, and T_2 , the 2-regular tree, with prob 1/2.



Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob 1/2, and T_2 , the 2-regular tree, with prob 1/2.



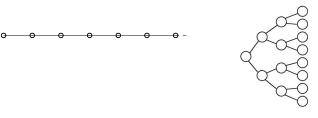
Overall
$$p_c = 1/2$$
 since for $p < 1/2$,

 $p_c(T_1) = 1$

$$\mathbb{P}\Big(\mathbf{o} \overset{\rho}{\longleftrightarrow} \infty\Big) = \frac{1}{2} \mathbb{P}_{\mathcal{T}_2}\left(\mathbf{o} \overset{\rho}{\longleftrightarrow} \infty\right) + \frac{1}{2} \mathbb{P}_{\mathcal{T}_1}\left(\mathbf{o} \overset{\rho}{\longleftrightarrow} \infty\right) = 0,$$

 $p_c(T_2) = 1/2$

Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob 1/2, and T_2 , the 2-regular tree, with prob 1/2.



 $p_c(T_2) = 1/2$

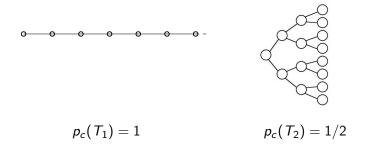
Overall
$$p_c = 1/2$$
 since for $p < 1/2$,

 $p_{c}(T_{1})=1$

$$\mathbb{P}\Big(\mathbf{o}\overset{p}{\longleftrightarrow}\infty\Big)=\frac{1}{2}\mathbb{P}_{\mathcal{T}_2}\left(\mathbf{o}\overset{p}{\longleftrightarrow}\infty\right)+\frac{1}{2}\mathbb{P}_{\mathcal{T}_1}\left(\mathbf{o}\overset{p}{\longleftrightarrow}\infty\right)=0,$$
 and for $p>1/2$,

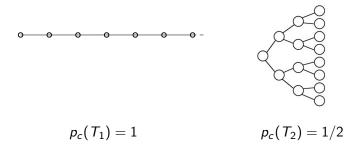
$$\mathbb{P}\left(\mathbf{o} \stackrel{\rho}{\longleftrightarrow} \infty\right) \geq \frac{1}{2} \mathbb{P}_{\mathcal{T}_2}\left(\mathbf{o} \stackrel{\rho}{\longleftrightarrow} \infty\right) > 0.$$

Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob 1/2, and T_2 , the 2-regular tree, with prob 1/2.



 $p_c=1/2$, but it is **not** true that $p_c(\tilde{T})=1/2$ almost surely.

Consider the random tree \tilde{T} which is equal to T_1 , the 1-regular tree, with prob 1/2, and T_2 , the 2-regular tree, with prob 1/2.



 $p_c = 1/2$, but it is **not** true that $p_c(\tilde{T}) = 1/2$ almost surely.

For our supercritical GW: $p_c = 1/\mu$, almost surely (Lyons 1990).

Quenched vs annealed results: notation

$$T_n=n^{th}$$
 generation of T , $C=$ cluster of \mathbf{o} , $Y_n=|C\cap T_n|$, $C_{\geq n}=C$ conditioned to have size n , $W=\lim \frac{Z_n}{\mu^n}$

$$\mathbf{P} = \text{law of } T$$
 $\mathbb{P}_T = \text{law of percolation on } T$, given T
 $\mathbb{P} = \mathbf{P} \times \mathbb{P}_T$, annealed law

 $T_n = n^{th}$ generation of T, $C = \text{cluster of } \mathbf{o}$, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim \frac{Z_n}{\mu^n}$

Annealed
$$p_c = 1/\mu$$
 $\mathbb{P} \Big(\mathbf{o} \overset{p_c}{\longleftrightarrow} T_n \Big) \sim c n^{-1}$ $\mathbb{P} (|C| \geq n) \sim c' n^{-1/2}$

 $T_n = n^{th}$ generation of T, $C = \text{cluster of } \mathbf{o}$, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{\mu^n}$

Annealed

$$p_c = 1/\mu$$
 $\mathbb{P}\left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} T_n\right) \sim cn^{-1}$
 $\mathbb{P}(|C| \ge n) \sim c' n^{-1/2}$

Given
$$Y_n > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} Y$
and $(n^{-1}Y_{n(1+t)})_{t\geq 0} \stackrel{(d)}{\rightarrow} (Y_t)_{t\geq 0}$

 $T_n = n^{th}$ generation of T, $C = \text{cluster of } \mathbf{o}$, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim \frac{Z_n}{\mu^n}$

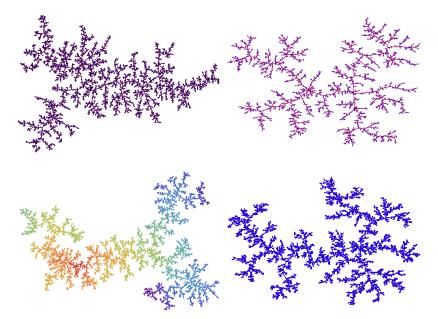
Annealed

$$p_c = 1/\mu$$
 $\mathbb{P}\left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} T_n\right) \sim cn^{-1}$
 $\mathbb{P}(|C| > n) \sim c'n^{-1/2}$

Given
$$Y_n > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} Y$
and $(n^{-1}Y_{n(1+t)})_{t \geq 0} \stackrel{(d)}{\rightarrow} (Y_t)_{t \geq 0}$

Given
$$Y_{\infty} > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} \hat{Y}$
 $(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\rightarrow} CRT$

The CRT



Pictures by Igor Kortchemski and Laurent Ménard.

 $T_n = n^{th}$ generation of T, $C = \text{cluster of } \mathbf{o}$, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{u^n}$. [AV24], [AL25].

Annealed

$$p_c = 1/\mu$$
 $\mathbb{P}\left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} T_n\right) \sim cn^{-1}$
 $\mathbb{P}(|C| > n) \sim c' n^{-1/2}$

Given
$$Y_n > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\to} Y$
and $(n^{-1}Y_{n(1+t)})_{t \ge 0} \stackrel{(d)}{\to} (Y_t)_{t \ge 0}$

Given
$$Y_{\infty} > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$
 $(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\to} CRT$

$$p_c(T)=1/\mu$$
 a.s.

 $T_n = n^{th}$ generation of T, $C = \text{cluster of } \mathbf{o}$, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{u^n}$. [AV24], [AL25].

Annealed
$$p_c = 1/\mu$$
 $\mathbb{P} \Big(\mathbf{o} \overset{p_c}{\longleftrightarrow} T_n \Big) \sim c n^{-1}$ $\mathbb{P} (|C| \ge n) \sim c' n^{-1/2}$

Given
$$Y_n > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} Y$
and $(n^{-1}Y_{n(1+t)})_{t\geq 0} \stackrel{(d)}{\rightarrow} (Y_t)_{t\geq 0}$

Given
$$Y_{\infty} > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$
 $(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\to} CRT$

Quenched

 $p_c(T) = 1/\mu \text{ a.s.}$ $\mathbb{P}_T \left(\mathbf{o} \overset{p_c}{\longleftrightarrow} T_n \right) \sim \overset{\mathbf{W}}{\cdot} cn^{-1} \text{ a.s. *+}$

^{*}proved by Michelen (2019) under higher moment assumptions.

⁺also obtained by Berger-Ayuso Ventura (2024).

 $T_n = n^{th}$ generation of T, $C = \text{cluster of } \mathbf{o}$, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{u^n}$. [AV24], [AL25].

Annealed $p_c = 1/\mu$

$$\mathbb{P}\left(\mathbf{o} \stackrel{\rho_c}{\longleftrightarrow} T_n\right) \sim c n^{-1}$$

$$\mathbb{P}(|C| > n) \sim c' n^{-1/2}$$

Given
$$Y_n > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} Y$
and $(n^{-1}Y_{n(1+t)})_{t>0} \stackrel{(d)}{\rightarrow} (Y_t)_{t>0}$

Given
$$Y_{\infty} > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$
 $(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\to} CRT$

Quenched

$$p_c(T) = 1/\mu \text{ a.s.}$$
 $\mathbb{P}_T \left(\mathbf{o} \overset{p_c}{\longleftrightarrow} T_n \right) \sim \overset{\mathbf{W}}{\smile} cn^{-1} \text{ a.s. *+}$

 $\mathbb{P}_T(|C| \ge n) \sim W \cdot c' n^{-1/2}$ a.s.

^{*}proved by Michelen (2019) under higher moment assumptions.

⁺also obtained by Berger-Ayuso Ventura (2024).

 $T_n = n^{th}$ generation of T, $C = \text{cluster of } \mathbf{o}$, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{u^n}$. [AV24], [AL25].

Annealed $p_c = 1/\mu$

$$\mathbb{P}\left(\mathbf{o} \stackrel{\rho_c}{\longleftrightarrow} T_n\right) \sim c n^{-1}$$

$$\mathbb{P}(|C| > n) \sim c' n^{-1/2}$$

Given $Y_n > 0$: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} Y$ and $(n^{-1}Y_{n(1+t)})_{t>0} \stackrel{(d)}{\rightarrow} (Y_t)_{t>0}$

Given
$$Y_{\infty} > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$
 $\left(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n\right) \stackrel{(d)}{\to} CRT$

$$p_c(T) = 1/\mu$$
 a.s. $\mathbb{P}_T \left(\mathbf{o} \overset{p_c}{\longleftrightarrow} T_n \right) \sim \overset{\mathbf{W}}{\cdot} cn^{-1}$ a.s. *+

$$\mathbb{P}_T(|C| \ge n) \sim W \cdot c' n^{-1/2} \text{ a.s.}$$

$$n^{-1}Y_n^T \stackrel{(d)}{\rightarrow} Y \text{ a.s. } *$$

^{*}proved by Michelen (2019) under higher moment assumptions.

⁺also obtained by Berger-Ayuso Ventura (2024).

 $T_n = n^{th}$ generation of T, $C = \text{cluster of } \mathbf{o}$, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{u^n}$. [AV24], [AL25].

Annealed
$$p_c = 1/\mu$$
 $\mathbb{P} \Big(\mathbf{o} \overset{p_c}{\longleftrightarrow} T_n \Big) \sim c n^{-1}$ $\mathbb{P} (|C| \geq n) \sim c' n^{-1/2}$

and
$$(n^{-1}Y_{n(1+t)})_{t\geq 0} \stackrel{(d)}{\to} (Y_t)_{t\geq 0}$$

Given $Y_{\infty} > 0$: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$

Given $Y_n > 0$: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} Y$

$$(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \overset{(d)}{\underset{\mathsf{GHP}}{\longleftrightarrow}} CRT$$

$$p_c(T) = 1/\mu \text{ a.s.}$$
 $\mathbb{P}\left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} T_n\right) \sim W \cdot cn^{-1} \text{ a.s. *+}$
 $\mathbb{P}(|C| \geq n) \sim W \cdot c' n^{-1/2} \text{ a.s.}$

$$n^{-1}Y_n^T \stackrel{(d)}{\to} Y \text{ a.s. } *$$
 $\left(n^{-1}Y_{n(1+t)}^T\right)_{t\geq 0} \stackrel{(d)}{\to} (Y_t)_{t\geq 0} \text{ a.s.}$

^{*}proved by Michelen (2019) under higher moment assumptions.

⁺also obtained by Berger-Ayuso Ventura (2024).

 $T_n = n^{th}$ generation of T, $C = \text{cluster of } \mathbf{o}$, $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{u^n}$. [AV24], [AL25].

$$p_{c} = 1/\mu$$

$$\mathbb{P}\left(\mathbf{o} \stackrel{p_{c}}{\longleftrightarrow} T_{n}\right) \sim cn^{-1}$$

$$\mathbb{P}(|C| \geq n) \sim c' n^{-1/2}$$
Given $Y_{n} > 0$: $n^{-1}Y_{n} \stackrel{(d)}{\to} Y$

Annealed

and
$$\left(n^{-1}Y_{n(1+t)}\right)_{t\geq 0}\stackrel{(d)}{\rightarrow}(Y_t)_{t\geq 0}$$

Given
$$Y_{\infty} > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\to} \hat{Y}$
 $(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\to} CRT$

$$p_c(T) = 1/\mu \text{ a.s.}$$

$$\mathbb{P}\left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} T_n\right) \sim W \cdot cn^{-1} \text{ a.s. *+}$$

$$\mathbb{P}(|C| \geq n) \sim W \cdot c' n^{-1/2} \text{ a.s.}$$

$$n^{-1}Y_n^T \xrightarrow{(d)} Y \text{ a.s. } *$$
 $\left(n^{-1}Y_{n(1+t)}^T\right)_{t>0} \xrightarrow{(d)} (Y_t)_{t\geq 0} \text{ a.s.}$

$$n^{-1/2}Y_n^T \stackrel{(d)}{\rightarrow} \hat{Y}$$
 a.s. *

^{*}proved by Michelen (2019) under higher moment assumptions.

⁺also obtained by Berger-Ayuso Ventura (2024).

 $T_n = n^{th}$ generation of T, C =cluster of \mathbf{o} , $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{u^n}$. [AV24], [AL25].

Annealed
$$p_{c} = 1/\mu$$

$$\mathbb{P}\left(\mathbf{o} \overset{p_{c}}{\longleftrightarrow} T_{n}\right) \sim cn^{-1}$$

$$\mathbb{P}(|C| \geq n) \sim c' n^{-1/2}$$

Given
$$Y_n > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} Y$
and $(n^{-1}Y_{n(1+t)})_{t>0} \stackrel{(d)}{\rightarrow} (Y_t)_{t>0}$

Given
$$Y_{\infty} > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} \hat{Y}$
 $(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\rightarrow} CRT$

Quenched $p_c(T) = 1/\mu$ a.s.

 $\mathbb{P}_{T}\left(\mathbf{o} \stackrel{p_{c}}{\longleftrightarrow} T_{n}\right) \sim \frac{W \cdot cn^{-1}}{W \cdot c^{-1}} \text{ a.s. } *+ \mathbb{P}_{T}(|C| \geq n) \sim \frac{W \cdot c'n^{-1/2}}{W \cdot c'} \text{ a.s.}$

$$n^{-1}Y_n^T \stackrel{(d)}{\to} Y \text{ a.s. } *$$
 $\left(n^{-1}Y_{n(1+t)}^T\right)_{t\geq 0} \stackrel{(d)}{\to} (Y_t)_{t\geq 0} \text{ a.s.}$

$$n^{-1/2}Y_n^T \stackrel{(d)}{\to} \hat{Y} \text{ a.s. } *$$
 $(C_{\geq n}^T, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\to} CRT \text{ a.s.}$

^{*}proved by Michelen (2019) under higher moment assumptions.

⁺also obtained by Berger-Ayuso Ventura (2024).

Quenched vs annealed results - stable analogues

Stable tails on offspring law: $\xi(x,\infty) \sim cx^{-\alpha}$, where $\alpha \in (1,2)$. $T_n = n^{th}$ generation of T, C = cluster of \mathbf{o} , $Y_n = |C \cap T_n|$, $C_{\geq n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{n}$. [AV24], [AL25].

$$p_{c} = 1/\mu$$
 $\mathbb{P}\left(\mathbf{o} \stackrel{p_{c}}{\longleftrightarrow} T_{n}\right) \sim cn^{-\frac{1}{\alpha-1}}$
 $\mathbb{P}(|C| \geq n) \sim c' n^{-1/\alpha}$
Given $Y_{n} > 0$: $n^{-\frac{1}{\alpha-1}} Y_{n} \stackrel{(d)}{\hookrightarrow} Y$
 $\left(n^{-\frac{1}{\alpha-1}} Y_{n(1+t)}\right)_{t \geq 0} \stackrel{(d)}{\hookrightarrow} (Y_{t})_{t \geq 0}$

Annealed

Given
$$Y_{\infty} > 0$$
: $n^{-\frac{1}{\alpha-1}}Y_n \overset{(d)}{\to} \hat{Y}$ $n^{-\frac{1}{\alpha-1}}Y_n^T \overset{(d)}{\to} \hat{Y}$ $C_{\geq n}, n^{-(1-1/\alpha)}d_n, \frac{1}{n}\mu_n) \overset{(d)}{\to} \mathcal{T}_{\alpha}$ $n^{-(1-1/\alpha)}d_n, \frac{1}{n}\mu_n \overset{(d)}{\to} \mathcal{T}_{\alpha}$ a.s.

$$p_c(T) = 1/\mu \text{ a.s.}$$

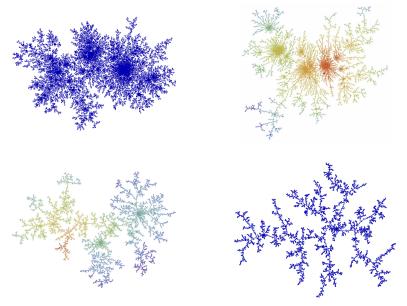
$$\mathbb{P}_T \left(\mathbf{o} \stackrel{p_c}{\longleftrightarrow} T_n \right) \sim W \cdot cn^{-\frac{1}{\alpha - 1}}$$

$$\mathbb{P}_T (|C| \ge n) \sim W \cdot c' n^{-1/\alpha}$$

Given
$$Y_n > 0$$
: $n^{-\frac{1}{\alpha-1}}Y_n \overset{(d)}{\to} Y$ $n^{-\frac{1}{\alpha-1}}Y_n^T \overset{(d)}{\to} Y$ a.s. $n^{-\frac{1}{\alpha-1}}Y_{n(1+t)} \overset{(d)}{\to} (Y_t)_{t \ge 0} \overset{(d)}{\to} (Y_t)_{t \ge 0} \overset{(d)}{\to} (Y_t)_{t \ge 0}$ a.s.

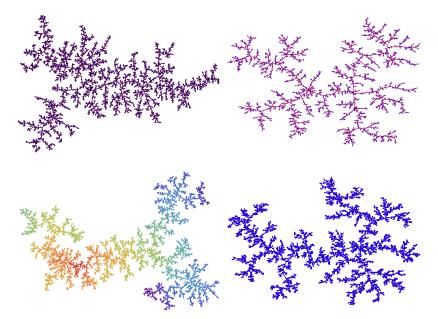
$$n^{-rac{1}{lpha-1}}Y_n^T\stackrel{(d)}{
ightarrow}\hat{Y}$$
 $C_{\geq n}^T, n^{-(1-1/lpha)}d_n, rac{1}{n}\mu_n)\stackrel{(d)}{\underset{\mathsf{GHP}}{
ightarrow}}\mathcal{T}_lpha$ a.s.

Stable trees



Pictures by Igor Kortchemski.

The CRT



Pictures by Igor Kortchemski and Laurent Ménard.

 $T_n = n^{th}$ generation of T, C =cluster of \mathbf{o} , $Y_n = |C \cap T_n|$, $C_{>n} = C$ conditioned to have size n, $W = \lim_{n \to \infty} \frac{Z_n}{u^n}$. [AV24], [AL25].

Annealed
$$p_c = 1/\mu$$
 $\mathbb{P}ig(\mathbf{o} \overset{
ho_c}{\longleftrightarrow} T_nig) \sim c n^{-1}$ $\mathbb{P}(|C| \geq n) \sim c' n^{-1/2}$

Given $Y_n > 0$: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} Y$

and
$$(n^{-1}Y_{n(1+t)})_{t\geq 0} \stackrel{(d)}{\rightarrow} (Y_t)_{t\geq 0}$$

Given
$$Y_{\infty} > 0$$
: $n^{-1}Y_n \stackrel{(d)}{\rightarrow} \hat{Y}$
 $(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\rightarrow} CRT$

 $(C_{>n}^T, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\underset{C \mapsto P}{\longrightarrow}} CRT$ a.s.

Quenched

 $p_{c}(T) = 1/\mu \text{ a.s.}$ $\mathbb{P}_T \left(\mathbf{o} \overset{\rho_c}{\longleftrightarrow} T_n \right) \sim \mathbf{W} \cdot cn^{-1} \text{ a.s. } *+$ $\mathbb{P}_T(|C| > n) \sim W \cdot c' n^{-1/2}$ a.s.

$$\left(n^{-1}Y_{n(1+t)}^{\mathcal{T}}\right)_{t\geq 0} \stackrel{(d)}{\to} (Y_t)_{t\geq 0} \text{ a.s.}$$

 $n^{-1/2}Y_n^T \stackrel{(d)}{\rightarrow} \hat{Y}$ a.s. *

 $n^{-1}Y_{r}^{T} \stackrel{(d)}{\rightarrow} Y \text{ a.s. } *$

^{*}proved by Michelen (2019) under higher moment assumptions.

⁺also obtained by Berger-Ayuso Ventura (2024).

Extension to critical percolation on hyperbolic random planar maps??

C =cluster of **o**, $C_{>n} = C$ conditioned to have size n,

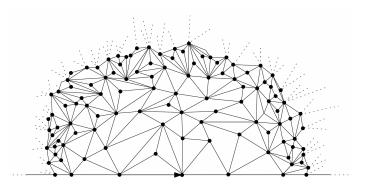


Image by Gourab Ray.

Extension to critical percolation on hyperbolic random planar maps??

$$C =$$
cluster of **o**, $C_{>n} = C$ conditioned to have size n .

Annealed

 p_c is explicit (Ray 2014)

 $\mathbb{P}(\mathsf{Height}(C) \geq n) \sim cn^{-1} *$

$$\mathbb{P}(|C| \geq n) \sim c' n^{-1/2} *$$

$$(C_{\geq n}, n^{-1/2}d_n, \frac{1}{n}\mu_n) \stackrel{(d)}{\underset{GHP}{\longrightarrow}} CRT *$$

^{*}A.-Croydon 2023.

