Martin boundaries and asymptotic behavior of supercritical branching random walks

Elisabetta Candellero

(joint works with T.Hutchcroft, D.Bertacchi and F.Zucca)

Università degli Studi Roma Tre

Angers, April 2025

Elisabetta Candellero (Roma 3)

BRWs and Martin Boundaries

Angers, April 11, 2025 1 / 20

Model

Ingredients:

- Graph G = (V, E) (infinite, locally finite, connected);
- Transition kernel on G, call it P := (p(x, y))_{x,y∈V} (for this talk: nearest neighbor, i.e., p(x, y) > 0 ⇔ x ~ y);

イロト イポト イヨト イヨト 三日

Model

Ingredients:

• Graph G = (V, E) (infinite, locally finite, connected);

<

- Transition kernel on G, call it P := (p(x, y))_{x,y∈V} (for this talk: nearest neighbor, i.e., p(x, y) > 0 ⇔ x ~ y);
- Offspring distribution ν with mean $\mathbf{m} := \sum_{k \ge 0} k\nu(k)$ s.t.

$$\left\{egin{array}{ll} \mathbf{m}>1 & ({
m survival wpp}) & (*) \ \mathbb{E}(L\log(L))<\infty, \quad L\sim
u. \ (**) \end{array}
ight.$$

Elisabetta Candellero (Roma 3)

イロト 不得 トイヨト イヨト 二日

Branching Random Walks (BRWs)

Model for growth of population of bacteria

- Start with 1 individual at a reference vertex o;
- Inductively: at each generation, each alive particle produces, independently a random number of offspring. This number is distributed according to ν;
- Each newly-born particle takes 1 step according to *P*, while old particles die.

For $n \ge 0$ let $\mathbf{B}_n \in \mathbb{N}^V$ be the vector s.t. for all $x \in V$

 $\mathbf{B}_n(x) := \#$ individuals alive at x at time n.

Branching Random Walks (BRWs)

Note: Known [Galton-Watson] that m > 1 (*) \Rightarrow indefinite survival occurs with positive probability.

Note: Known [Benjamini-Peres + Gantert-Müller, Bertacchi-Zucca] that if $\mathbf{m} \leq \frac{1}{\rho_G}$ then BRW <u>transient</u> on *G*. (ρ_G = spectral radius of *P*.)

Note: \exists random variable $W \ge 0$ s.t. almost surely $\lim_{n} \frac{\sum_{x \in V} \mathbf{B}_n(x)}{\mathbf{m}^n} = W$. By $L \log L$ -condition $(**) \Rightarrow \mathbb{E}W = 1$ [Kesten-Stigum].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Random Walks and Martin Boundaries I

Recap

(i) A function $h: V \to \mathbb{R}$ is <u>harmonic</u> if, for all $x \in V$,

$$h(x) = \sum_{y \in V} p(x, y)h(y) =: Ph(x);$$

(ii) <u>Martin kernel</u>: for all $x, y \in V$

$$K(x,y) := \frac{G(x,y)}{G(o,y)},$$

where $G(x,y) := \sum_{n \ge 0} p^{(n)}(x,y)$ is the Green function.

イロト 不得 トイヨト イヨト 三日

Random Walks and Martin Boundaries II

• The Martin boundary is a **topological** space (related to nonnegative harmonic functions).

<u></u>

- Its construction depends on the Martin kernels K(x, ·), which depend on P ⇒ by changing P we change the Martin boundary.
- A sequence of states (y_n) converges in the Martin topology

 $(K(x, y_n))$ converges for all $x \in V$.

Notation: if $(y_n) \to \xi \in \partial G$, then set $K(x,\xi) := \lim_{n \to \infty} K(x, y_n)$ for all $x \in V$.

Elisabetta Candellero (Roma 3)

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Classical Theorem (RW)

Classical Convergence Theorem [Doob]. Let (X_n) be a **transient** RW on *G* governed by *P*, then

Classical Theorem (RW)

Classical Convergence Theorem [Doob]. Let (X_n) be a **transient** RW on *G* governed by *P*, then \exists **unique random variable** $X_{\infty} \in \partial G$ s.t. $\forall x \in V$,

 $\lim_n X_n = X_\infty \quad \mathbb{P}_x\text{-almost surely}$

in the Martin topology. Moreover, for all Borel sets $A \subset \partial G$,

$$\mathbb{P}_{x}(X_{\infty} \in A) = \int_{A} K(x, \cdot) d\gamma(\cdot),$$

for some measure γ supported on ∂G .

Note: K(o, y) = 1 for all $y \in \widehat{G}$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Our Theorem (BRW)

Theorem [C.-Hutchcroft (independently, KW)]. Let (\mathbf{B}_n) denote a BRW started at *o* governed by *P* and ν (offspring distribution) as above. Then,

Our Theorem (BRW)

Theorem [C.-Hutchcroft (independently, KW)]. Let (\mathbf{B}_n) denote a BRW started at *o* governed by *P* and ν (offspring distribution) as above. Then, almost surely (for almost all realizations of BRW)

$$\left(\frac{\mathbf{B}_n}{\mathbf{m}^n}\right)$$
 converges weakly to a random measure **W** on ∂G .

Moreover, let (X_n) be a transient RW governed by P with $X_{\infty} \in \partial G$. Then,

イロト イポト イヨト イヨト 三日

Our Theorem (BRW)

Theorem [C.-Hutchcroft (independently, KW)]. Let (\mathbf{B}_n) denote a BRW started at *o* governed by *P* and ν (offspring distribution) as above. Then, almost surely (for almost all realizations of BRW)

$$\left(\frac{\mathbf{B}_n}{\mathbf{m}^n}\right)$$
 converges weakly to a random measure **W** on ∂G .

Moreover, let (X_n) be a transient RW governed by P with $X_{\infty} \in \partial G$. Then,

 $\mathbb{E}_o\mathbf{W}(A)=P_o(X_\infty\in A),\quad\text{for all A Borel set of ∂G.}$

Elisabetta Candellero (Roma 3)

イロト 不得 トイヨト イヨト 二日

Subgraphs of G

What can we say about subgraphs?

3

イロト イボト イヨト イヨト

Subgraphs of G

What can we say about subgraphs?

Fix an infinite subgraph $U \subset G$, with 2 transition kernels:

$$P_U$$
 s.t. $p_U(x,y) := \begin{cases} p(x,y) & \text{if } x, y \in U \\ 0 & \text{otherwise} \end{cases}$

and

$$egin{aligned} \mathcal{Q}_{m{U}} & ext{ s.t. } & q_{m{U}}(x,y) := \left\{ egin{aligned} p_U(x,y) & ext{ if } \sum_{w \in U} p_U(x,w) = 1 \ rac{p_U(x,y)}{\sum_{w \in U} p_U(x,w)} & ext{ otherwise} \end{aligned}
ight.$$

Note: Q_{II} is transition kernel of RW conditional on staying in U.

3

Image: A mathematic strategy (mathematic strategy)

Survival vs Persistence

<u>Survival</u> of BRW in U: when U is visited <u>infinitely often</u> by particles of BRW (They can enter and exit U!)

<u>Persistence</u> of BRW in *U*: there is a particle born in *U* s.t. there is a line of descendants completely contained in U (This one never exits *U*!)

Interested in survival/persistence/convergence of trajectories of BRW started in U to some Borel set in ∂G .

Survival vs Persistence: results I

Spectral radius of RW governed by $P: \rho_G := \limsup_n \sqrt[n]{p^{(n)}(o, o)}$.

Let ρ_U and ϕ_U denote the spectral radii of P_U and Q_U respectively.

Theorem 1 [Bertacchi - C. - Zucca] Suppose U is connected.

We have

If $\forall \mathbf{m} > 1$, $\mathbb{P}_{x}((\mathbf{B}_{n}) \text{ persists in } U) > 0$ then $\rho_{U} = \phi_{U}$.

If U is "regular enough" then also vice versa holds.

Moreover,

$$P_x^P(X_\infty \in \partial U) > 0 \; \Rightarrow \; \forall \, \mathbf{m} > 1, \; \mathbb{P}_x\left((\mathbf{B}_n) \text{ persists in } U
ight) > 0.$$

Survival vs Persistence: results I - comments

• In Thm 1, is it true that $\rho_U = \phi_U \implies \rho_U = \phi_U = \rho_G$?

Survival vs Persistence: results I - comments

• In Thm 1, is it true that $\rho_U = \phi_U \implies \rho_U = \phi_U = \rho_G$?

No.

There are examples where $\rho_G > \rho_U$. (Ex. Homogeneous tree attached to a singleton, with a suitable transition probability.)

Survival vs Persistence: results I - comments

• In Thm 1, is it true that $\rho_U = \phi_U \implies \rho_U = \phi_U = \rho_G$?

No.

There are examples where $\rho_G > \rho_U$. (Ex. Homogeneous tree attached to a singleton, with a suitable transition probability.)

• We say that *U* is "**regular enough**" when the *induced* Galton-Watson process has only *finitely* many types.

Survival vs Persistence: results II

If ρ_U and ϕ_U denote the spectral radii of P_U and Q_U respectively, let

$$\boldsymbol{\zeta} := \frac{\rho_U}{\phi_U} \le 1.$$

Theorem 2 [Bertacchi - C. - Zucca] Suppose U regular (*1 type GW*), infinite, then

- $\partial U(Q_U, 1)$ homeomorphic to $\partial U(P_U, \zeta)$.
- When **m** > 1 and *L* log *L* condition holds, then **almost surely**

 $\left(\frac{\mathsf{B}_n}{(\mathsf{m}\boldsymbol{\zeta})^n}\right) \text{ converges weakly to a random measure } \mathsf{W}_{\boldsymbol{\zeta}} \text{ on } \partial U(P_U,\boldsymbol{\zeta})$

and $\mathbb{E}_{x}(\mathbf{W}_{\boldsymbol{\zeta}}(A)) = P_{x}^{P_{U}}(Y_{\infty} \in A)$ for all A Borel set of $\partial U(P_{U}, \boldsymbol{\zeta})$, $Y_{\infty} = \lim_{n} Y_{n}$ and (Y_{n}) denotes a RW governed by P_{U} .

・ロト ・ ヨ ・ モ ヨ ト ・ ヨ ・ うのぐ

Survival vs Persistence: results II - comments

Some meaning of Thm 2: when considering a subgraph
 ↓

renormalization factor might be different than m.

We find:

- (i) Where the process converges;
- (ii) What the renormalization factor is.

Survival vs Persistence: results III

If ρ_U and ϕ_U denote the spectral radii of P_U and Q_U respectively, let

$$\boldsymbol{\zeta} := \frac{\rho_U}{\phi_U} \le 1.$$

Theorem 3 [Bertacchi - C. - Zucca] Suppose *U* connected and "regular enough". Then,

$$\mathbf{m} > \frac{1}{\zeta} \Rightarrow \mathbb{P}_{x}((\mathbf{B}_{n}) \text{ persists in } U) > 0.$$

Remark: the value $\frac{1}{\zeta}$ represents the equivalent of "1" for standard BRW!

Elisabetta Candellero (Roma 3)

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Survival vs Persistence: Some proof ideas

Main point: understand the "asymptotic" properties of the process on U. Suppose U connected,

• Let (Y_n) denote a RW with kernel P. Then,

$$\rho_{U} = \limsup_{n} \left(\rho_{U}^{(n)}(x, x) \right)^{1/n} =$$

$$= \limsup_{n} \left[\mathbb{P}_{x}(Y_{n} = x \mid Y_{1}, \dots, Y_{n} \in U) \mathbb{P}(Y_{1}, \dots, Y_{n} \in U) \right]^{1/n}$$

$$= \phi_{U} \limsup_{n} \left(\mathbb{P}(\mathsf{RW \ doesn't \ exit \ U \ for \ n \ steps}) \right)^{1/n}.$$

Thus (when U is regular enough),

 $\boldsymbol{\zeta} \approx \mathbb{P}(\mathsf{RW} \text{ takes one step in } U)$

Survival vs Persistence: Some proof ideas

U connected, $(\mathbb{E} [\# \text{particles that at time } n \text{ are in } U])^{1/n} \to \mathbf{m} \frac{\rho_U}{\phi_U}$.

- Persistence \Rightarrow **m** $\frac{\rho_U}{\phi_U} \ge 1$. If this holds for all **m** > 1, then $\frac{\rho_U}{\phi_U} = 1$.
- U "regular enough"

$$ert$$
 If $rac{
ho_U}{\phi_U}=1 \; \Rightarrow \;$ persistence.

(日) (同) (三) (三) (三)

Examples and counterexamples I

Is it possible $P^{P}(X_{\infty} \in \partial U) = 0$ but $\mathbb{P}((\mathbf{B}_{n})$ persists in U) > 0?

イロト 不得 トイヨト イヨト 二日

Examples and counterexamples I

Is it possible $P^{P}(X_{\infty} \in \partial U) = 0$ but $\mathbb{P}((\mathbf{B}_{n})$ persists in U) > 0? YES!

イロト 不得 トイヨト イヨト 二日

Examples and counterexamples I

Is it possible $P^{P}(X_{\infty} \in \partial U) = 0$ but $\mathbb{P}((\mathbf{B}_{n})$ persists in U) > 0?

YES!

Example: $G := T_3 \times T_{100}$, $U := o_1 \times T_{100}$ with P as SRW on each factor. Here the range (easy computations)

$$\frac{1}{\sigma} < \mathbf{m} \le \frac{1}{\rho_{G}}$$

is non-empty, hence by **Thm 3**, $\mathbb{P}((\mathbf{B}_n) \text{ persists in } U) > 0$ (and BRW transient on G).

However, known [Picardello-Woess] that $P^P(X_{\infty} \in \partial U) = 0!$

Elisabetta Candellero (Roma 3)

Examples and counterexamples II

Previously: *U* with "small" boundary, still had **persistence** w.p.p.. Now: does "large" boundary imply survival?

イロト イポト イヨト イヨト 三日

Examples and counterexamples II

Previously: *U* with "small" boundary, still had **persistence** w.p.p.. Now: does "large" boundary imply survival?

NO!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples and counterexamples II

Previously: *U* with "small" boundary, still had **persistence** w.p.p.. Now: does "large" boundary imply survival?

NO!

<u>(Counter)Example</u>: Let G be the **homogeneous tree** \mathbb{T}_d . We show that for some BRW (no details here) on \mathbb{T}_d , for any subgraph $B \subset \mathbb{T}_d$ there is a set $A_B \subset \mathbb{T}_d$ so that

 $\partial A_B = \partial \mathbb{T}_d$ but $\mathbb{P}_x(\text{extinction in } B) = \mathbb{P}_x(\text{extinction in } A_B)$,

for all $x \in \mathbb{T}_d$. (E.g., almost sure extinction in $B \Rightarrow$ almost sure extinction in A_B even if $\partial A_B = \partial \mathbb{T}_d$.)

Thank you for your attention!

Elisabetta Candellero (Roma 3)

BRWs and Martin Boundaries

- ∢ ⊒ → Angers, April 11, 2025 20 / 20

э