A phase transition for the tree-builder random walk

Guillaume Conchon--Kerjan

Branching and Persistence - Angers, 10th April 2025

joint work with Arthur Blanc-Renaudie (CNRS Rouen), Camille Cazaux (LPSM Paris), Tanguy Lions (UMPA Lyon) and Arvind Singh (CNRS Paris-Saclay)

3 Proof ideas: local times and urn processes

| ◆ □ ▶ → □ ▶ → 三 ▶ → 三 → ○ ○ ○

- ν probability distribution on \mathbb{N} (:= {0, 1, ...}), $\nu(0) \neq 0$. $\hookrightarrow (\xi_n)_{n \geq 0}$ i.i.d.~ ν
- a growing tree $T = (T_0 T_1, ...) \rightarrow T_n$ at time n. $\hookrightarrow T_0 = \{\circ\}$ reduced to a single vertex, the root.
- A random walk $(S_n)_{n\geq 0}$. Initially, $S(0) = \circ$

The dynamics

Given (T_n, S_n) :

 $T_{n+1} = T_n$ with ξ_n leaves attached to the vertex S_n .

 S_{n+1} = uniform random neighbour of S_n in T_{n+1} ($S_{n+1} = S_n$ if $T_{n+1} = \{\circ\}$).

Let: $|T_n|$ the height of T_n , $|S_n| = \text{dist}(\circ, S_n)$ the height of S_n . $\text{deg}(S_n) := \text{degree of } S_n$.

Example: $\xi_0 = 2, \xi_1 = 3, \xi_2 = 0.$

(B)

- ∢ A →

э

Example:

 $\xi_0 = 2, \xi_1 = 3, \xi_2 = 0.$

 $|S_0| = 0$, $|S_1| = 1$, $|S_2| = 2$, $|S_3| = 1$. Remarks: When (S_n) comes back to an already visited vertex, it can still add new leaves there! Also, (S_n) is not Markovian, but (T_n, S_n) is.

Questions

- Transience, *recurrence* depending on ν?
 → Defined as returning finitely/*infinitely* many times to ∘.
- By the way, is there still a 0-1 law for transience/recurrence?

Previous results

Thms (Engländer, Figuereido, Iacobelli, Oliveira, Ribeiro, Valle, Zuaznábar '21 -'24):

for every ν , there exists $v = v_{\nu} > 0$ s.t. $\frac{S_n}{n} \rightarrow v$ a.s.

+CLT, renewal structure.

• No phase transition - transience is too strong, even if $\nu = Ber(\varepsilon)$, $\varepsilon > 0!$ \hookrightarrow Can we rebalance this?

The biased model

Each vertex x has a **parent** p(x), i.e. its neighbour towards the root \circ $(p(\circ) = \circ$: add an oriented *root loop* to \circ)

The biased dynamics

$$T_{n+1}$$
 defined as before.
 $S_{n+1} = \begin{cases} p(S_n) & \text{with proba } \frac{\rho}{\rho + \deg(S_n)} \\ & \text{any other neighbour of } S_n & \text{with proba } \frac{1}{\rho + \deg(S_n)}. \end{cases}$

New question: if ρ is large enough, can (S_n) visit \circ infinitely many times with positive proba/almost surely?

New question: if ρ is large enough, can (S_n) visit \circ infinitely many times with positive proba/almost surely?

Remark (coupling): transience probability decreasing with ρ and increasing with ν (w.r.t. stochastic domination).

 \hookrightarrow We can only have one phase transition.

New question: if ρ is large enough, can (S_n) visit \circ infinitely many times with positive proba/almost surely?

No because...

New question: if ρ is large enough, can (S_n) visit \circ infinitely many times with positive proba/almost surely?

Yes because...

Simulations: $\nu = Ber(p), p \in (0, 1].$

p = 1: 50000 |S_n| |S_n| |S_n| 40000 100 30000 20000 500 10000 5e+07 1e+08 5e+07 5e+07 1e+08 (a) $\rho = 2.95$ (b) $\rho = 3$ (c) $\rho = 3.05$

Guillaume Conchon--Kerjan A phase transition for the tree-builder rarBranching and Persistence - Angers, 10t

Simulations: $\nu = Ber(p)$, $p \in (0, 1]$.

 $p = .2, \ \rho = 1.5$:

Guillaume Conchon--Kerjan A phase transition for the tree-builder rarBranching and Persistence - Angers, 10t

Simulations: $\nu = Ber(p)$, $p \in (0, 1]$.

 $p = .2 \rho = 1.3$:

Guillaume Conchon--Kerjan A phase transition for the tree-builder rarBranching and Persistence - Angers, 10t

1 Model: a random walk on a growing tree

3 Proof ideas: local times and urn processes

| ◆ □ ▶ → □ ▶ → 三 ▶ → 三 → ○ ○ ○

Result - the walk (S_n)

Define $\bar{\nu} := \sum_{k \ge 1} k \nu(k) \in (0, \infty]$ the expectation of ν .

 $\tau_i := i$ -th return to the root, $i \ge 0$.

Theorem (Blanc-Renaudie, Cazaux, C., Lions, Singh '24) If $\rho < 1 + 2\overline{\nu}$: (S_n) transient, $|S_n|/n \rightarrow v_{\rho,\nu} > 0$ a.s. (+CLT)

If $\rho \ge 1 + 2\bar{\nu}$: (S_n) is recurrent, returns infinitely many times to \circ a.s.

- $\rho > 1 + 2\bar{\nu}$: 'positive recurrent' ($\mathbb{E}[\tau_i \tau_{i-1}] < \infty$ for all $i \ge 1$)
- $\rho = 1 + 2\overline{\nu}$: 'null recurrent' ($\mathbb{E}[\tau_i \tau_{i-1}] = \infty$ for all $i \ge 1$)

 \hookrightarrow Always transient when $\bar{\nu} = \infty$.

 \hookrightarrow Even in the positive recurrent case, $\tau_i \ge e^{\delta i}$ a.s. for *i* large enough, $\delta = \delta(\rho, \nu) > 0$: \sharp {returns to \circ } grows logarithmically.

Result - the tree T_n

Theorem (Blanc-Renaudie, Cazaux, C., Lions, Singh '24) If $\rho < 1 + 2\bar{\nu}$: $|T_n|/n \rightarrow v_{\rho,\nu}$ a.s. (+same CLT as $|S_n|$)

If $\rho > 1 + 2\bar{\nu}$: $|T_n| / \log(n) \in [c_1(\rho, \nu), c_2(\rho, \nu)]$ for *n* large a.s. $(c_1, c_2 > 0)$

 \hookrightarrow conjecture when $\rho = 1 + 2\overline{\nu}$: $|T_n| = \Theta(n^{1/2})$ (same for typical values of $|S_n|$). 1 Model: a random walk on a growing tree

3 Proof ideas: local times and urn processes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Local times

 \mathcal{T}_{full} := usual Ulam-Harris tree rooted at \circ : each vertex x has countably many children, (x, j) := j-th child of x.

L(x, i) := the local time at vertex $x \in \mathcal{T}_{full}$ before time $\tilde{\tau}_i := i$ -th crossing of the *root loop*.

 $N_i := \sharp \{ \text{children of } \circ \text{ created before } \tilde{\tau}_i \}$

Branching process of local times

Markovian structure of local times since at least Kesten - Kozlov - Spitzer '75.

Multitype branching process Z on \mathcal{T}_{full} , types in \mathbb{N} denote the local time. Kernel $K : \mathbb{N} \mapsto \mathbb{N}^{\mathbb{N}}$.

 \hookrightarrow Given $Z(\circ) = i \ge 1$, offspring local times distributed as $K(i, \cdot) \stackrel{(d)}{=} (L((\circ, 1), i), L((\circ, 2), i), \ldots).$

Proposition(From Basdevant - Singh '19)

 (S_n) recurrent $\Leftrightarrow Z$ dies out for every initial value of $Z(\circ)$

• $\mathbb{P}(\tilde{\tau}_i < \infty) = \mathbb{P}(Z \text{ dies out } | Z(\circ) = i)$

• Local time process $L(\cdot, i)$ under $\mathbb{P}(\cdot | \tilde{\tau}_i < \infty)$ distributed as Z under $\mathbb{P}(\cdot | Z(\circ) = i, Z \text{ dies out })$

Recurrence for large ρ

Recall $N_i := \sharp \{ \text{children of } \circ \text{ created before } \tilde{\tau}_i \}$

Idea: (S_n) recurrent if there is a positive map f s.t.

$$f(i) > \mathbb{E}\left[\sum_{j=1}^{N_i} f(L((v,j),i))\right]$$

 $N_i \simeq e^{c(\nu)i}$, $L((v,j),i) \lesssim \rho/i... f(y) = e^{Cy}$ for C large should work!

Issue: recurrence for large ρ only (unicity of phase transition by monotonicity in ρ and ν), no explicit critical point/asymptotics on return times.

If $M_{i,j} :=$ expected number of offspring of type j for a particle of type i, we have f such that $f(i) > \sum_{j \ge 1} M_{i,j} f(j)$ (right "almost" eigenvector with eigenvalue < 1).

We had f such that $f(i) > \sum_{j \ge 1} M_{i,j}f(j)$...

... But in fact $f(i) := \rho^{-i}$ is a left eigenvector!

$$\sum_{i\geq 1}\rho^{-i}M_{i,j}=\frac{\bar{\nu}}{\rho-\bar{\nu}-1}\rho^{-j}(\star)$$

$$(S_n)$$
 transient $\Leftrightarrow \frac{\bar{\nu}}{\rho - \bar{\nu} - 1} > 1 \Leftrightarrow \rho < 2\bar{\nu} + 1.$

Key to prove (*): computing $\mathbb{E}[N_i - N_{i-1}]$.

(Actually $\sum_{i\geq 1} f(i)M_{i,j} = \sum_{l\leq i} f(G_l)\mathbb{E}[N_l - N_{l-1}]$ for some \sum s of geometric variables G_l)

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ \sharp {offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ \sharp {offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ #{offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ \sharp {offspring of \circ created between i - 1th and ith visit to root loop}.

Recall $\mathbb{E}[N_i - N_{i-1}] =$ \sharp {offspring of \circ created between i - 1th and ith visit to root loop}.

S moving out of $\circ \leftrightarrow$ picking from an urn of the vertices.

 $N_i \sim \sharp\{\bullet \text{ added in each column until time } \tilde{\tau}_i\}$ Let's look at the *j*-th colum, $j \leq i$.

The Poissonized urn

Urn for the *j*-th column:

- start with $X \sim \nu$ •, and ρ •.
- any ball independently picked after Exp(1) time; if •: add $X' \sim \nu$ •.
- stop at time t_{i-j} when we pick $i j \bullet$.

The Poissonized urn

Urn for the *j*-th column:

- start with $X \sim \nu$ •, and ρ •.
- any ball independently picked after Exp(1) time; if •: add $X' \sim \nu$ •.

- stop at time t_{i-j} when we pick $i - j \bullet$.

The Poissonized urn

Urn for the j-th column:

- start with $X \sim \nu$ •, and ρ •.
- any ball independently picked after Exp(1) time; if •: add $X' \sim \nu$ •.
- stop at time t_{i-j} when we pick $i j \bullet$.

 $C_t := \sharp \{ \bullet \text{ added by time } t \}.$

 $d\mathbb{E}[C_t]/dt = \bar{\nu}\mathbb{E}[C_t] \Rightarrow \mathbb{E}[C_t] = \bar{\nu}e^{\bar{\nu}t}. \text{ Integrate against } t_{i-j} \sim \Gamma(i-j,\rho).$ $\Rightarrow \mathbb{E}[C_{t_{i-j}}] = \bar{\nu}(\frac{\rho}{\rho-\bar{\nu}})^{i-j}. \text{ Sum over } j \text{ to get } \mathbb{E}[N_i].$

Open questions

- critical case $\rho = 1 + 2\overline{\nu}$: conjecture $h(T_n), S_n = \Theta(n^{1/2})$

- monotonicity of speed in ν and ρ ?

- vary ν in time, e.g. $\xi_n \sim \text{Ber}(n^{-\gamma})$. (S_n) recurrent if $\gamma > 1/2$ (Engländer, lacobelli, Ribeiro '23), conjectured transient if $\gamma < 1/2$.

- graph builder random walk: S_n can be connected to pre-existing vertices instead of new leaves

Thank you for your attention!