Number of particles at sublinear distances from the tip in branching Brownian motion

Gabriel Flath

Department of Statistics University of Oxford

Branching and Persistence, Angers, April 2025

Branching Brownian motion

Branching Brownian motion (BBM) combines Brownian motion and branching processes. At time t=0, a particle starting in $0\in\mathbb{R}$ moves as Brownian motion. After a random time $\exp(1)$ it splits in 2. Each particle repeats this process independently from the splitting position.

Figure: Path of the BBM particles, Matthew Roberts

The rightmost particle

Denote

 $ightharpoonup \mathcal{N}_t$ the collection of the particles at time t, and $\mathcal{N}(t) = \#\mathcal{N}(t)$ its cardinal.

The rightmost particle

Denote

- \blacktriangleright \mathcal{N}_t the collection of the particles at time t, and $N(t) = \#\mathcal{N}(t)$ its cardinal.
- lacksquare $X_u(s) \in \mathbb{R}$ the particle position at time s for $u \in \mathcal{N}_t$ and $M_t := \max_{u \in N(t)} X_u(t)$.

The rightmost particle

Denote

- $ightharpoonup \mathcal{N}_t$ the collection of the particles at time t, and $\mathcal{N}(t) = \#\mathcal{N}(t)$ its cardinal.
- $lacksquare X_u(s) \in \mathbb{R}$ the particle position at time s for $u \in \mathcal{N}_t$ and $M_t := \max_{u \in N(t)} X_u(t)$.

Lalley and Sellke [1] proved that there exists a constant C > 0 such that

$$M_t - m_t - \log(CZ_{\infty})/\sqrt{2} \xrightarrow[t \to \infty]{d} G,$$
 (1)

where $m_t = \sqrt{2}t - \frac{3}{2\sqrt{2}}\log t$, G follows a Gumbel distribution, and $Z_{\infty} > 0$ is the almost sure limit of the derivative martingale:

$$Z(t) = \sum_{u \in \mathcal{N}_t} (\sqrt{2}t - X_u(t)) e^{\sqrt{2}(X_u(t) - \sqrt{2}t)}.$$

For $t \geq 0$, denote the number of particles to the right of $m_t - x$,

$$N(t,x) = \#\{u \in \mathcal{N}_t : X_u(t) \ge m_t - x\},\tag{2}$$

Theorem

Let x_t be such that, as $t \to \infty$, $x_t = o_t(t/\log(t))$ and $x_t \to \infty$, then,

$$\frac{N(t,x_t)}{\pi^{-\frac{1}{2}}x_t e^{\sqrt{2}x_t} e^{-\frac{x_t^2}{2t}}} \xrightarrow[t \to \infty]{\mathbb{P}} Z_{\infty}.$$
 (3)

For $t \geq 0$, denote the number of particles to the right of $m_t - x$,

$$N(t,x) = \#\{u \in \mathcal{N}_t : X_u(t) \ge m_t - x\},\tag{2}$$

Theorem

Let x_t be such that, as $t \to \infty$, $x_t = o_t(t/\log(t))$ and $x_t \to \infty$, then,

$$\frac{N(t,x_t)}{\pi^{-\frac{1}{2}}x_t e^{\sqrt{2}x_t} e^{-\frac{x_t^2}{2t}}} \xrightarrow[t \to \infty]{\mathbb{P}} Z_{\infty}.$$
 (3)

Denote $f(t,x) := \pi^{-\frac{1}{2}} x e^{\sqrt{2}x} e^{-\frac{x^2}{2t}}$.

For $t \geq 0$, denote the number of particles to the right of $m_t - x$,

$$N(t,x) = \#\{u \in \mathcal{N}_t : X_u(t) \ge m_t - x\},\tag{2}$$

Theorem

Let x_t be such that, as $t \to \infty$, $x_t = o_t(t/\log(t))$ and $x_t \to \infty$, then,

$$\frac{N(t, x_t)}{\pi^{-\frac{1}{2}} x_t e^{\sqrt{2} x_t} e^{-\frac{x_t^2}{2t}}} \xrightarrow{t \to \infty} Z_{\infty}.$$
 (3)

Denote $f(t,x) := \pi^{-\frac{1}{2}} x e^{\sqrt{2}x} e^{-\frac{x^2}{2t}}$.

The statement of Theorem 1 is equivalent to, for any $\delta > 0$,

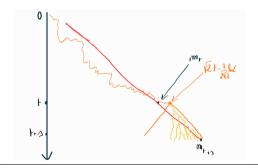
$$\lim_{x \to \infty} \lim_{c \to 0} \sup_{t: x \le c \frac{t}{\ln(t)}} \mathcal{P}\left(\left| \frac{N(t, x)}{f(t, x)} - Z_{\infty} \right| > \delta \right) = 0.$$
 (4)

Theorem

$$\limsup_{t} \frac{N(t, x_t)}{x_t e^{\sqrt{2}x_t}} = \infty \qquad a.s.$$
 (5)

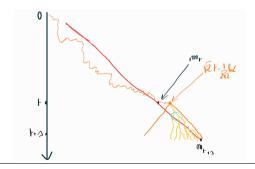
Theorem

$$\limsup_{t} \frac{N(t, x_t)}{x_t e^{\sqrt{2}x_t}} = \infty \qquad a.s.$$
 (5)



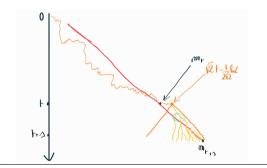
Theorem

$$\limsup_{t} \frac{N(t, x_t)}{x_t e^{\sqrt{2}x_t}} = \infty \qquad a.s.$$
 (5)



Theorem

$$\limsup_{t} \frac{N(t, x_t)}{x_t e^{\sqrt{2}x_t}} = \infty \qquad a.s.$$
 (5)



$$\sqrt{2}t - rac{1}{2\sqrt{2}}\log t + m_{s_\star} = m_{t+s_\star}$$
 $s_\star \approx t^{2/3}$

Define $Q_t(u, v) = \sup\{s \leq t \text{ such that } \forall \gamma \leq s : X_u(s) = X_v(s)\}$, for $(u, v) \in \mathcal{N}_t^2$.

Theorem

Let x_t and R_t be such that, as $t \to \infty$, $x_t = o_t(t/\log(t))$, $x_t \to \infty$ and $R_t \to \infty$. Then for any $\delta > 0$:

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{\#\{(u,v)\in\mathcal{N}(t,x_t)^2:Q_t(u,v)>R_t\}}{f(t,x_t)^2}>\delta\right)=0. \tag{6}$$

Define $Q_t(u, v) = \sup\{s \leq t \text{ such that } \forall \gamma \leq s : X_u(s) = X_v(s)\}$, for $(u, v) \in \mathcal{N}_t^2$.

Theorem

Let x_t and R_t be such that, as $t \to \infty$, $x_t = o_t(t/\log(t))$, $x_t \to \infty$ and $R_t \to \infty$. Then for any $\delta > 0$:

$$\lim_{t\to\infty} \mathbb{P}\left(\frac{\#\{(u,v)\in\mathcal{N}(t,x_t)^2:Q_t(u,v)>R_t\}}{f(t,x_t)^2}>\delta\right)=0. \tag{6}$$

Equivalently, by Theorem 1, let U and V be chosen uniformly in $\mathcal{N}(t,x_t)$ and define $Q_t = Q_t(U,V)$ if $\mathcal{N}(t,x) \neq \emptyset$ and $Q_t = t$ otherwise. Then we have that $(Q_t)_{t \in \mathbb{R}}$ is tight, i.e.

$$\lim_{R \to \infty} \sup_{t > 0} \mathbb{P}\left(Q_t > R\right) = 0. \tag{7}$$

▶ Prove an upper envelope on the path of particles in N(t,x).

- ▶ Prove an upper envelope on the path of particles in N(t,x).
- ▶ Prove that most of particles in N(t,x) are located within $m_t x + O(1)$.

- ▶ Prove an upper envelope on the path of particles in N(t,x).
- ▶ Prove that most of particles in N(t,x) are located within $m_t x + O(1)$.
- ▶ Reinforce the upper envelope with this new localisation.

- ▶ Prove an upper envelope on the path of particles in N(t,x).
- ▶ Prove that most of particles in N(t,x) are located within $m_t x + O(1)$.
- Reinforce the upper envelope with this new localisation.
- ► Estimate the conditional expectation of the number of localized particles given the initial behavior of the BBM.

- ▶ Prove an upper envelope on the path of particles in N(t,x).
- ▶ Prove that most of particles in N(t,x) are located within $m_t x + O(1)$.
- Reinforce the upper envelope with this new localisation.
- ► Estimate the conditional expectation of the number of localized particles given the initial behavior of the BBM.
- Prove that this conditional expectation is close to the number of localized particles via a concentration argument.

Conditional expectation estimation

Lemma

As $t \to \infty$, for x_t such that $x_t = o(t \log(t)^{-1})$ and $x_t \to \infty$, for r such that $r \to \infty$ and for R such that $R = o(\sqrt{t})$, $R = o(t/x_t)$, and R > r, the following holds:

$$\mathbb{E}\left[\#\{u \in \mathcal{N}_t : X_u(t) \ge m_t - x_t \text{ and } X_u(\cdot) \text{ is loc after } r\} \mid \mathcal{F}_R\right] = f(t, x_t) Z_{\infty}(1 + o_t(1)) \quad a.s.$$
(8)

where as $t \to \infty$, $o_t(1) \to 0$ almost surely.

Conditional expectation estimation

Lemma

As $t \to \infty$, for x_t such that $x_t = o(t \log(t)^{-1})$ and $x_t \to \infty$, for r such that $r \to \infty$ and for R such that $R = o(\sqrt{t})$, $R = o(t/x_t)$, and R > r, the following holds:

$$\mathbb{E}\left[\#\{u \in \mathcal{N}_t : X_u(t) \ge m_t - x_t \text{ and } X_u(\cdot) \text{ is loc after } r\} \mid \mathcal{F}_R\right] = f(t, x_t) Z_{\infty}(1 + o_t(1)) \quad a.s.$$
(8)

where as $t \to \infty$, $o_t(1) \to 0$ almost surely.

Denote
$$\mathcal{N}(t,X,r) = \{u \in \mathcal{N}_t : X_u(t) \geq m_t - X \text{ and } X_u(\cdot) \text{ is loc after } r\},\ \mathcal{N}(t,X,r) = \#\mathcal{N}(t,X,r).$$

Link between Theorem 1 and Theorem 3

Lemma
For
$$t, 0 \le R \le t, X \in \mathbb{R}$$
,
$$\mathbb{E}\left[\left(N(t, X, r) - \mathbb{E}\left[N(t, X, r) \mid \mathcal{F}_{R}\right]\right)^{2}\right]$$

$$\le \mathbb{E}\left[\#\{(u, v) \in \mathcal{N}(t, X, r)^{2} : Q_{t}(u, v) > R\}\right]$$
(9)

Open problems

Conjecture

 $(Q_t)_{t\in\mathbb{R}}$, as defined in Theorem 3, converges in distribution to a random variable Q

Open problems

Conjecture

 $(Q_t)_{t\in\mathbb{R}}$, as defined in Theorem 3, converges in distribution to a random variable Q

Conjecture

Let x_t be such that, as $t \to \infty$, $x_t = o_t(t/\log(t))$ and $x_t >> \sqrt{t}$, then,

$$\frac{N(t,x_t)}{f(t,x_t)} \xrightarrow[t \to \infty]{} Z_{\infty} \quad a.s.$$
 (10)

S. P. Lalley and T. Sellke.

A conditional limit theorem for the frontier of a branching Brownian motion.

Ann. Probab., 15:1052-1061, 1987.