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Branching Brownian motion (BBM)

Definition:

At time t = 0, a particle starts a Brownian motion in R.
After a random time with exponential distribution, it dies and gives
birth to two children.

Each child then repeats this process independently of each other.

Motivations:

Discrete counterpart: branching random walk.

Toy model for spin glass systems or log-correlated field.

Deep connection with the F-KPP equation.

L. Chataignier (UPS - IMT) Asymptotic overlap distribution of BBM April 10, 2025 3 / 17



Branching Brownian motion (BBM)

Definition:

At time t = 0, a particle starts a Brownian motion in R.
After a random time with exponential distribution, it dies and gives
birth to two children.

Each child then repeats this process independently of each other.

Motivations:

Discrete counterpart: branching random walk.

Toy model for spin glass systems or log-correlated field.

Deep connection with the F-KPP equation.

L. Chataignier (UPS - IMT) Asymptotic overlap distribution of BBM April 10, 2025 3 / 17



Branching Brownian motion (BBM)

Figure: Realizations of a BBM over three different times.
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Additive and derivative martingales

Gibbs measure:

N (t) : set of particles alive at time t.

Xu(t) : position of particle u at time t.

Gβ,t(u) ∝ eβXu(t).

Martingales:

Additive martingale at inverse temperature β ≥ 0,

Wt(β) = e−ψ(β)t
∑

u∈N (t)

eβXu(t), where ψ(β) = 1 + β2/2.

Derivative martingale at inverse temperature β ≥ 0,

Zt(β) = e−ψ(β)t
∑

u∈N (t)

(βt−Xu(t))e
βXu(t).
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Phase transition

Since Wt(β) is a non-negative martingale, it converges a.s. to some
W∞(β).

Theorem ([Kingman, 1975, Biggins, 1977, Neveu, 1988])

A phase transition occurs at βc =
√
2. More precisely,

if β ≥ βc, then W∞(β) = 0 a.s.,

if β < βc, then Wt(β) is uniformly integrable and W∞(β) > 0 a.s.

Theorem ([Lalley and Sellke, 1987])

The critical derivative martingale Zt := Zt(βc) converges a.s. to some
Z∞ > 0.
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The overlap

Figure: Time of death of the last common ancestor of two particles.

L. Chataignier (UPS - IMT) Asymptotic overlap distribution of BBM April 10, 2025 7 / 17



The overlap

Overlap qt(u, v) of two particles u, v ∈ N (t): age of their last common
ancestor, rescaled by a factor of t.

Question: Where is the overlap of two particles chosen independently at
random according to Gβ,t?

We want to understand the asymptotic behavior of the overlap
distribution, defined for a ∈ (0, 1) by

νβ,t([a, 1]) =
〈
1{qt(u,v)≥a}

〉
β,t

=

∑
u,v∈N (t) e

β(Xu(t)+Xv(t))1{qt(u,v)≥a}∑
u,v∈N (t) e

β(Xu(t)+Xv(t))
.
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Typical overlap distribution

Theorem 1 ([C. and Pain, 2024])

Let a ∈ (0, 1). As t→ ∞,

1 if 0 ≤ β < βc/2, then

e(1−β
2)atνβ,t([a, 1])

a.s.−−→ W∞(2β)

W∞(β)2
E
[
W∞(β)2

]
,

2 if β = βc/2, then

√
ateat/2νβ,t([a, 1])

P−→
√

2

π

Z∞

W∞(β)2
E
[
W∞(β)2

]
,

3 if βc/2 < β < βc, then

(at)3β/βce(βc−β)2atνβ,t([a, 1])
(d)−−→ (Z∞)2β/βc

W∞(β)2
S,

where S is βc/2β-stable and independent of the BBM.
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Sketch of proof for 0 ≤ β < βc/2

Rewrite the overlap distribution

νβ,t([a, 1]) =
e−(1−β2)at

Wt(β)2

∑
w∈N (at)

e2βXw(at)−ψ(2β)atW
(w,at)
t−at (β)2

≈ e−(1−β2)at

Wt(β)2

∑
w∈N (at)

e2βXw(at)−ψ(2β)at

︸ ︷︷ ︸
=Wat(2β)

E
[
W∞(β)2

]

∼ e−(1−β2)atW∞(2β)

W∞(β)2
E
[
W∞(β)2

]
, a.s.

Particles that contribute mainly to νβ,t([a, 1]) follow a Brownian
motion with drift 2β until time at and then with drift β.
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Typical trajectories

0 at t

√
2t

slope 2β

slope β

•u
•v

•
w

(a) Case 0 ≤ β < βc/2. Particles that
contribute to νβ,t([a, 1]) have drift 2β
until time at and then have drift β.

0 at t

√
2t

√
2

β

•u
•v

•
w

(b) Case βc/2 < β < βc. Particles that
contribute to νβ,t([a, 1]) are near the
top at time at and then have drift β.
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Expected overlap distribution

Theorem 2 ([C. and Pain, 2024])

Let a ∈ (0, 1). As t→ ∞,

1 if β = 0, then
E[νβ,t([a, 1])] ∼ 2ate−at,

2 if 0 ≤ β <
√

2/3, then

“ E[νβ,t([a, 1])] ∼ e−(1−β2)atE
[
W∞(2β)

W∞(β)2

]
E
[
W∞(β)2

]
”,

3 if β =
√
2/3, then

E[νβ,t([a, 1])] ≍ t−1/2e−at/3,

4 if
√

2/3 < β < βc, then

E[νβ,t([a, 1])] ≍ t−3/2e−(2−β2)2at/8β2

.
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Trajectories contributing to the expectation

0 at t

√
2t

2β

β

•u
•v

•
w

(a) Case 0 ≤ β <
√

2/3. Particles that
contribute to E

[
νβ,t([a, 1])

]
have

drift 2β until time at and then have
drift β.

0 at t

√
2t

1/β + β/2

β

•u
•v

•
w

(b) Case
√

2/3 < β < βc. Particles
that contribute to E

[
νβ,t([a, 1])

]
are

near (1/β + β/2)at at time at and then
have drift β.
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Perspectives

What about β = βc and β > βc?

Overlap at two temperatures β ̸= β′.

Asymptotics of νβt,t when βt −→ βc/2, of Eνβ,t when βt −→
√
3/2.

Generalization: random offspring distribution, other branching
models (e.g. CREM).
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Thank you for listening!



Appendix: Trajectories contributing to the expectation

β0
√
2
2

√
2√
3

1
√
2

√
2

v(β) = 2β

v(β) = 1/β + β/2

Figure: Graph of the function v such that particles that contribute to
E[νβ,t([a, 1])] are “near” v(β)at at time at.
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