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Definition of Fractional Brownian Motion

For 0 < H < 1:
Continuous, centered Gaussian Process (BH(t))t∈R on R with
covariance

1

2

(
|s|2H + |t|2H − |t − s|2H

)
for s, t ∈ R.
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Properties

▶ Increments independent if, and only if, H = 1/2

▶ H-self similar, i.e. BH(at)
fdd
= |a|H BH(t)

▶ Stationary increments, i.e. BH(t)− BH(s)
fdd
= BH(t − s)
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Persistence

▶ Find the asymptotic behaviour of

P

(
sup

t∈[0,T ]
BH(t) < 1

)
for T → ∞

▶ For self-similar processes we expect T−θ+o(1) for θ ∈ (0,∞).

▶ “large domain - fixed barrier”
⇔ “fixed domain - small barrier”

P

(
sup

t∈[0,1]
BH(t) < ε

)
= ε

θ
H
+o(1) for ε → 0
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FBM on R+

Theorem (Molchan (1999))

The persistence exponent of Fractional Brownian Motion on the
positive real line (BH(t))t≥0 is 1− H, i.e.

P

(
sup

t∈[0,T ]
BH(t) < 1

)
= T−(1−H)+o(1) as T → ∞

▶ What happens, if we replace [0,T ] by [−T ,T ]?
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Two-Sided FBM

Theorem (Molchan (1999))

The persistence exponent of FBM on the whole real line
(BH(t))t∈R is 1, i.e.

P

(
sup

t∈[−T ,T ]
BH(t) < 1

)
= T−1+o(1) as T → ∞

▶ What happens in domains that do not contain 0?
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Domains without Zero

▶ Let K ⊂ R compact and 0 /∈ K :

P
(

sup
t∈TK

BH(t) ≤ 1

)
= . . .

≥ P
(
sup
t∈K

BH(t) ≤ 0

)
> 0

▶ What happens in higher dimensions?
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FBM with Multi-Dimensional Time

▶ Replace absolute values by Euclidean norm

▶ For 0 < H < 1:
Continuous, centered Gaussian Process (BH(t))t∈Rd on Rd

with covariance

1

2

(
∥s∥2H + ∥t∥2H − ∥t − s∥2H

)
for s, t ∈ Rd
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FBM with Multi-Dimensional Time

Theorem (Molchan (1999))

The persistence exponent of FBM (BH(t))t∈Rd on the real
d-dimensional space is d , i.e.

P

(
sup

s∈[−T ,T ]d
BH(s) < 1

)
= T−d+o(1) as T → ∞

▶ What happens with FBM on different geometry?
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FBM on the Sphere (SFBM)

▶ Replace Euclidean norm by geodesic / angular distance d(., .)

▶ Specify an origin O = (1, 0, . . . , 0)

▶ For 0 < H ≤ 1/2 (Istas (2005)):
Continuous, centered Gaussian Process (SH(η))η∈Sd−1

on
Sd−1 with covariance

1

2

(
d(η,O)2H + d(ζ,O)2H − d(η, ζ)2H

)
for η, ζ ∈ Sd−1.

▶ Not a covariance function for H > 1/2 (Istas (2005))
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Persistence Exponent of SFBM

Theorem (Aurzada, H. (2025))

The persistence exponent of SFBM (SH(η))η∈Sd−1
on the sphere

Sd−1 is equal to d − 1, i.e.

P

(
sup

η∈Sd−1

SH(η) < ε

)
= ε

(d−1)
H

+o(1) as ε → 0.
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Slepian’s Lemma
Combining Inequalities

Ingredients for the Proof of the Lower Bound

▶ A geometric comparison inequality (Toponogov’s Theorem)

▶ A stochastic comparison inequality (Slepian’s Lemma)

▶ Results for Euclidean FBM by Molchan
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Toponogov’s Theorem

Figure: Spherical Triangle Figure: Comparison Triangle

▶ Toponogov (1959): c ≤ “?”

▶ (Cov. on Sd−1) ≥ (Cov. on Rd−1)
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Slepian’s Lemma

▶ Comparison result for Gaussian processes

▶ E.g. (Xt) and (Yt) centred unit GP and E [XsXt ] ≥ E [YsYt ]:

P
(
sup
t∈I

Xt ≤ ε

)
Sl.
≥ P

(
sup
t∈I

Yt ≤ ε

)

▶ Ordered covariance ⇒ Ordered persistence probability
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Slepian’s Lemma for pos. correlated processes

▶ For a pos. correlated GP (Xt)t∈I with A,B ⊆ I , we have

P
(

sup
t∈A∪B

Xt ≤ ε

)
Sl.
≥ P

(
sup
t∈A

Xt ≤ ε

)
P
(
sup
t∈B

Xt ≤ ε

)

▶ SFBM is positively correlated
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Proof of the Lower Bound - Sketch

▶ Split into upper hemisphere H(O) and lower hemisphere
H(O) and use Slepian’s Lemma

P

(
sup

ξ∈Sd−1

SH(ξ) ≤ ε

)

Sl.
≥ P

(
sup

ξ∈H(O)
SH(ξ) ≤ ε

)
P

(
sup

ξ∈H(O)

SH(ξ) ≤ ε

)
▶ Toponogov’s Theorem + Slepian’s Lemma for bound on

upper hemisphere
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Hyperbolic FBM & More

FBM on Hyperbolic Space

▶ Real Hyperbolic Space Hd−1 has constant curvature −1

▶ Existence of Hyperbolic FBM (for 0 < H ≤ 1/2) by Istas
(2005)

▶ Upper bound for Persistence (instead of lower bound) given
by Toponogov’s Theorem + Slepian’s Lemma
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Hyperbolic FBM & More

FBM on Riemannian manifolds M

Idea for persistence exponent (PE) of SFBM on M:

PE on Sd−1 = d − 1

≤

PE on M

≤

PE on Hd−1 = d − 1
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Danke für die Aufmerksamkeit! :)
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Brownian Bridge vs. Circular Brownian Motion

▶ Brownian Bridge (BB(t))t∈[0,2π]:

BB(t) = B(t)− t

2π
B(2π)

▶ Circular Brownian Motion (on S1):

S 1
2
(t) =

{
B(t) for t ∈ [0, π]

B(π)− B(t − π) for t ∈ [π, 2π]
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FBM on [−T α,T ]

Theorem (Molchan (2012))

The persistence exponent of FBM (BH(t))t∈R on the interval
[−Tα,T ] for 0 ≤ α ≤ 1 is (1− α)(1− H) + α · 1, i.e.

P

(
sup

s∈[−Tα,T ]
BH(s) < 1

)
= T−[(1−α)(1−H) + α·1]+o(1) as T → ∞
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FBM with Multi-Dimensional Time on Restricted Domains

Theorem (Molchan (2018))

The persistence exponent of FBM (BH(t))t∈Rd on domains
K := [0, 1]× [−1, 1]d−1 is d − H, i.e.

P
(

sup
s∈TK

BH(s) < 1

)
= T−(d−H)+o(1) as T → ∞
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FBM with Multi-Dimensional Time on Restricted Domains

Conjecture

The persistence exponent of Fractional Brownian Motion
(BH(t))t∈Rd on domains K := [0, 1]k × [−1, 1]d−k is d − kH, i.e.

P
(

sup
s∈TK

BH(s) < 1

)
= T−(d−kH)+o(1) as T → ∞
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