Persistence probabilities of spherical fractional Brownian motion

Max Helmer Technische Universität Darmstadt

joint work with Frank Aurzada (Darmstadt)

Angers, 10th April 2025

Euclidean Case

Spherical Case

Main Idea from the Proof

Future work

One-Dimensional Multi-Dimensional

Definition of Fractional Brownian Motion

For 0 < H < 1: Continuous, centered Gaussian Process $(B_H(t))_{t \in \mathbb{R}}$ on \mathbb{R} with covariance

$$\frac{1}{2}\left(|s|^{2H} + |t|^{2H} - |t - s|^{2H}\right)$$

for $s, t \in \mathbb{R}$.

Euclidean Case

Spherical Case Main Idea from the Proof Future work One-Dimensional Multi-Dimensional

Properties

• Increments independent if, and only if, H = 1/2

• *H*-self similar, i.e.
$$B_H(at) \stackrel{fdd}{=} |a|^H B_H(t)$$

▶ Stationary increments, i.e. $B_H(t) - B_H(s) \stackrel{fdd}{=} B_H(t-s)$

One-Dimensional Multi-Dimensional

Persistence

Find the asymptotic behaviour of

$$\mathbb{P}\left(\sup_{t\in[0,T]}B_{H}(t)<1
ight) \qquad ext{for } T o\infty$$

▶ For self-similar processes we expect $T^{-\theta+o(1)}$ for $\theta \in (0,\infty)$.

"large domain - fixed barrier"
 "fixed domain - small barrier"

$$\mathbb{P}\left(\sup_{t\in[0,1]}B_{H}(t)$$

Euclidean Case

Spherical Case Main Idea from the Proof Future work One-Dimensional Multi-Dimensional

FBM on \mathbb{R}^+

Theorem (Molchan (1999))

The persistence exponent of Fractional Brownian Motion on the positive real line $(B_H(t))_{t\geq 0}$ is 1 - H, i.e.

$$\mathbb{P}\left(\sup_{t\in[0,T]}B_{H}(t)<1
ight)=T^{-(1-H)+o(1)} \quad as \ T
ightarrow\infty$$

• What happens, if we replace [0, T] by [-T, T]?

One-Dimensional Multi-Dimensional

Two-Sided FBM

Theorem (Molchan (1999))

The persistence exponent of FBM on the whole real line $(B_H(t))_{t\in\mathbb{R}}$ is 1, i.e.

$$\mathbb{P}\left(\sup_{t\in [-\mathcal{T},\mathcal{T}]}B_{H}(t)<1
ight)=\mathcal{T}^{-1+o(1)} \quad \textit{as } \mathcal{T}
ightarrow\infty$$

What happens in domains that do not contain 0?

One-Dimensional Multi-Dimensional

Domains without Zero

• Let $K \subset \mathbb{R}$ compact and $0 \notin K$:

$$\mathbb{P}\left(\sup_{t\in TK} B_{H}(t) \leq 1\right) = \dots$$
$$\geq \mathbb{P}\left(\sup_{t\in K} B_{H}(t) \leq 0\right)$$
$$> 0$$

What happens in higher dimensions?

One-Dimensional Multi-Dimensional

FBM with Multi-Dimensional Time

- Replace absolute values by Euclidean norm
- For 0 < H < 1: Continuous, centered Gaussian Process (B_H(t))_{t∈ℝ^d} on ℝ^d with covariance

$$\frac{1}{2} \left(\|s\|^{2H} + \|t\|^{2H} - \|t - s\|^{2H} \right)$$

for $s, t \in \mathbb{R}^d$

One-Dimensional Multi-Dimensional

FBM with Multi-Dimensional Time

Theorem (Molchan (1999))

The persistence exponent of FBM $(B_H(t))_{t \in \mathbb{R}^d}$ on the real d-dimensional space is d, i.e.

$$\mathbb{P}\left(\sup_{s\in [-T,T]^d}B_H(s)<1
ight)=T^{-d+o(1)}$$
 as $T o\infty$

What happens with FBM on different geometry?

Definitions Main Result

FBM on the Sphere (SFBM)

Definitions Main Result

FBM on the Sphere (SFBM)

- ▶ Replace Euclidean norm by geodesic / angular distance d(.,.)
- Specify an origin $O = (1, 0, \dots, 0)$
- For 0 < H ≤ 1/2 (Istas (2005)): Continuous, centered Gaussian Process (S_H(η))_{η∈S_{d-1}} on S_{d-1} with covariance

$$\frac{1}{2}\left(d(\eta,O)^{2H}+d(\zeta,O)^{2H}-d(\eta,\zeta)^{2H}\right)$$

for $\eta, \zeta \in \mathbb{S}_{d-1}$.

Not a covariance function for H > 1/2 (Istas (2005))

Definitions Main Result

Persistence Exponent of SFBM

Theorem (Aurzada, H. (2025))

The persistence exponent of SFBM $(S_H(\eta))_{\eta \in \mathbb{S}_{d-1}}$ on the sphere \mathbb{S}_{d-1} is equal to d-1, *i.e.*

$$\mathbb{P}\left(\sup_{\eta\in\mathbb{S}_{d-1}}S_{H}(\eta)$$

Toponogov's Theorem Slepian's Lemma Combining Inequalities

Ingredients for the Proof of the Lower Bound

- A geometric comparison inequality (Toponogov's Theorem)
- A stochastic comparison inequality (Slepian's Lemma)
- Results for Euclidean FBM by Molchan

Toponogov's Theorem Slepian's Lemma Combining Inequalities

Toponogov's Theorem

Figure: Spherical Triangle

Figure: Comparison Triangle

▶ Toponogov (1959): c ≤ "?"
 ▶ (Cov. on S_{d-1}) ≥ (Cov. on ℝ^{d-1})

Toponogov's Theorem Slepian's Lemma Combining Inequalities

Slepian's Lemma

Comparison result for Gaussian processes

▶ E.g. (X_t) and (Y_t) centred unit GP and $\mathbb{E}[X_sX_t] \ge \mathbb{E}[Y_sY_t]$:

$$\mathbb{P}\left(\sup_{t\in I} X_t \leq \varepsilon\right) \stackrel{\text{SI.}}{\geq} \mathbb{P}\left(\sup_{t\in I} Y_t \leq \varepsilon\right)$$

▶ Ordered covariance ⇒ Ordered persistence probability

Toponogov's Theorem Slepian's Lemma Combining Inequalities

Slepian's Lemma for pos. correlated processes

▶ For a pos. correlated GP $(X_t)_{t \in I}$ with $A, B \subseteq I$, we have

$$\mathbb{P}\left(\sup_{t\in A\cup B} X_t \leq \varepsilon\right) \stackrel{\text{SI.}}{\geq} \mathbb{P}\left(\sup_{t\in A} X_t \leq \varepsilon\right) \mathbb{P}\left(\sup_{t\in B} X_t \leq \varepsilon\right)$$

Toponogov's Theorem Slepian's Lemma Combining Inequalities

Proof of the Lower Bound - Sketch

- Split into upper hemisphere $\mathcal{H}(O)$ and lower hemisphere $\mathcal{H}(\overline{O})$ and use Slepian's Lemma $\mathbb{P}\left(\sup_{\xi\in\mathbb{S}_{d-1}}S_{H}(\xi)\leq\varepsilon\right)$ $\overset{\text{SI.}}{\geq} \mathbb{P}\left(\sup_{\xi \in \mathcal{H}(O)} S_{H}(\xi) \leq \varepsilon\right) \mathbb{P}\left(\sup_{\xi \in \mathcal{H}(O)} S_{H}(\xi) \leq \varepsilon\right)$
- Toponogov's Theorem + Slepian's Lemma for bound on upper hemisphere

Hyperbolic FBM & More

Outline

Euclidean Case

Spherical Case

Main Idea from the Proof

Future work Hyperbolic FBM & More

Hyperbolic FBM & More

FBM on Hyperbolic Space

- ▶ Real Hyperbolic Space \mathbb{H}_{d-1} has constant curvature -1
- Existence of Hyperbolic FBM (for 0 < H ≤ 1/2) by Istas (2005)
- Upper bound for Persistence (instead of lower bound) given by Toponogov's Theorem + Slepian's Lemma

Hyperbolic FBM & More

FBM on Riemannian manifolds ${\cal M}$

Idea for persistence exponent (PE) of SFBM on \mathcal{M} :

PE on
$$\mathbb{S}_{d-1} = d - 1$$

 \leq
PE on \mathcal{M}
 \leq
PE on $\mathbb{H}_{d-1} = d - 1$

Danke für die Aufmerksamkeit! :)

References

- F. Aurzada and M. Helmer. 'Persistence probabilities of spherical fractional Brownian motion'. 2025. arXiv: 2503.03425 [math.PR].
- J. Istas. 'Spherical and Hyperbolic Fractional Brownian Motion'. In: Electronic Communications in Probability 10 (2005), pp. 254–262.
- J. Istas. 'Karhunen–Loève expansion of spherical fractional Brownian motions'. In: Statistics & Probability Letters 76.14 (2006), pp. 1578–1583.
- [4] J. Istas. 'Manifold indexed fractional fields'. In: <u>ESAIM: PS</u> 16 (2012), pp. 222–276.
- [5] G. Molchan. 'Maximum of a fractional Brownian motion: probabilities of small values'. In: Comm. Math. Phys. 205.1 (1999), pp. 97–111.
- [6] G. Molchan. 'Survival exponents for some Gaussian processes'. In: Int. J. Stoch. Anal. (2012), Art. ID 137271, 20.
- [7] G. Molchan. 'Persistence exponents for Gaussian random fields of fractional Brownian motion type'. In: J. Stat. Phys. 173.6 (2018), pp. 1587–1597.

Title: Persistence probabilities of spherical fractional Brownian motion

URL: https://arxiv.org/abs/2503.03425

Brownian Bridge vs. Circular Brownian Motion

Brownian Bridge
$$(BB(t))_{t \in [0,2\pi]}$$
:

$$BB(t) = B(t) - \frac{t}{2\pi}B(2\pi)$$

$$S_{rac{1}{2}}(t) = egin{cases} B(t) & ext{for } t \in [0,\pi] \ B(\pi) - B(t-\pi) & ext{for } t \in [\pi,2\pi] \end{cases}$$

FBM on
$$[-T^{\alpha}, T]$$

Theorem (Molchan (2012))

The persistence exponent of FBM $(B_H(t))_{t\in\mathbb{R}}$ on the interval $[-T^{\alpha}, T]$ for $0 \le \alpha \le 1$ is $(1 - \alpha)(1 - H) + \alpha \cdot 1$, i.e. $\mathbb{P}\left(\sup_{s \in [-T^{\alpha}, T]} B_H(s) < 1\right) = T^{-[(1 - \alpha)(1 - H) + \alpha \cdot 1] + o(1)}$ as $T \to \infty$

FBM with Multi-Dimensional Time on Restricted Domains

Theorem (Molchan (2018))

The persistence exponent of FBM $(B_H(t))_{t \in \mathbb{R}^d}$ on domains $K := [0,1] \times [-1,1]^{d-1}$ is d - H, i.e.

$$\mathbb{P}\left(\sup_{s\in \mathcal{TK}}B_{\mathcal{H}}(s)<1
ight)=T^{-(d-\mathcal{H})+o(1)} \quad as \ T
ightarrow\infty$$

FBM with Multi-Dimensional Time on Restricted Domains

Conjecture

The persistence exponent of Fractional Brownian Motion $(B_H(t))_{t \in \mathbb{R}^d}$ on domains $K := [0,1]^k \times [-1,1]^{d-k}$ is d - kH, i.e.

$$\mathbb{P}\left(\sup_{s\in \mathcal{TK}}B_{\mathcal{H}}(s)<1
ight)=T^{-(d-k\mathcal{H})+o(1)} \quad as \ T
ightarrow\infty$$