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One-dimensional case Two-dimensional case

Branching processes

Branching process in random environment

Random environment

We consider a random environment sequence Q = (Q(1),Q(2), . . . ) of random
probability measures on N0. We also consider it to be i.i.d. thus Q(1),Q(2), . . . are
independent copies of some random probability measure µ with generating function F
on N0.

Branching process

Branching processes in random environment could be thought of as developing in a
scheme of two stages. First, the random environment Q = (Q(1),Q(2), . . . ) is
established. Given its value q = (q(1), q(2), . . . ), the branching process Z then
evolves in the varying environment Q. Z(n) may again be realized as

Z(n) =

Z(n−1)∑
i=1

Y (i , n),

where given the environment q(n), Y (i , n) are random independent variables with
distributions q(n).
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One-dimensional case Two-dimensional case

Branching processes

Random walks

Associated random walk

Let Q be an i.i.d. environment. We require F [0] < 1 and 0 < Eµ < ∞ a.s. Then we
can define X (n) := logEq(n) and

S(0) = 0, S(n) =
n∑

i=1

X (n)

{
S(n)

}∞
n=0

is called an associated random walk.

Critical Branching process

We say that Branching process in random environment is critical if

lim sup
n→∞

S(n) = ∞, lim inf
n→∞

S(n) = −∞
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One-dimensional case Two-dimensional case

Random walks in cones

Survival probability

Survival probability in critical case

There exists a positive finite constant Y such that, as n → ∞:

P
(
Z(n) > 0

)
∼ Y · P

(
min{S(0), . . . S(n)} ⩾ 0

)

Stopping time

We define

τx := inf{n ⩾ 1 : x + S(n) ⩽ 0} x ⩾ 0.

Then we can reformulate the result above as:

P
(
Z(n) > 0

)
∼ Y · P

(
τ0 > n

)
.

Here we can consider stopping time τ0 as a first time random walk {S(n)}∞n=0 leaves
the cone K1 := {y ∈ R : y ⩾ 0} if it starts at S(0) = 0.
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One-dimensional case Two-dimensional case

Random walks in cones

Harmonic functions

Renewal function

In the critical case we have important result. Let V (x) be a renewal function for

random walk {S(n)}. Then one has P
(
τx > n

)
∼ V (x)√

n
(Doney ’95).

For the renewal function in one-dimensional case main asymptotics is known

V (x) ∼ C · x , x → ∞,

where C > 0 is some constant that does not depend on x and n.

Harmonic property

V (x) is strictly positive in K1 and moreover for arbitrary x ∈ K1 it is true that:

E
[
V (x + X ), x + X ∈ K1

]
− V (x) = 0,

where X is one step of random walk. In other words, V is a strictly positive
eigenfunction for operator

f → Ef − f ,

with eigenvalue 0.
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One-dimensional case Two-dimensional case

Branching processes

Multi-type Branching processes in random environment

One-dimensional Branching processes in joint environment

Here we consider several population with the following properties:

particles from different populations can only produce particles from its own
population;

one-dimensional environments for different populations could be dependent.

For two-dimensional case we can represent {(Z1(n),Z2(n))}∞n=0 in the following way:

(Z1(n),Z2(n)) =

Z1(n−1)∑
i=1

(Y1(i , n), 0) +

Z2(n−1)∑
j=1

(0,Y2(j , n)).

Critical case

We are interested in the case when both one-dimensional branching processes are
critical.
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One-dimensional case Two-dimensional case

Branching processes

Main example

Consider two one-dimensional i.i.d. environments (Q1(1),Q1(2), . . . ) and

(Q2(1),Q2(2), . . . ) with corresponding generating functions (F
(1)
1 ,F

(2)
1 , . . . ) and

(F
(1)
2 ,F

(2)
2 , . . . ):

F
(i)
1 (s1) =

∞∑
k=1

P(Q1(i) = k)sk1 = p1(i) +
∞∑
k=1

(1− p1(i))
kp1(i)s

k
1

F
(j)
2 (s2) =

∞∑
k=1

P(Q2(j) = k)sk2 = p2(j) +
∞∑
k=1

(1− p2(j))
kp2(j)s

k
2

Then EQ1(1) =
p1

1−p1
and EQ2(1) =

p2
1−p2

.

X1(i) := logEQ1(i), X2(i) := logEQ2(i), S1(n) :=
n∑

k=1

X1(k) S2(n) :=
n∑

k=1

X2(k),

where we set

Cor
[
X1(1)X2(1)

]
= ϱ, ϱ ∈ (1, 1).

We also consider E[X1(1)2] = E[X2(1)2] = 1.
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One-dimensional case Two-dimensional case

Branching processes

Global goal

Survival probability and coexistence

We are considering which is called coexistence probability: P
(
Z1(n) > 0,Z2(n) > 0

)
.

Main example

For one-dimensional case we can represent P
(
Z(n) > 0)

)
in a more convenient form:

P
(
Z(n) > 0)

)
=

(
1

EQ(1) . . .EQ(n)
+

n∑
k=1

ϕ
(
Q(1), . . . ,Q(n)

)
EQ(1) · · · · · EQ(n)

)−1

Recalling definition of S(k) and using the expression above for the main example we
can simplify:

P
(
Z1(n) > 0,Z2(n) > 0

)
= E

[( n∑
k=1

e−S1(k)
)−1( n∑

k=1

e−S2(k)
)−1

]
.
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One-dimensional case Two-dimensional case

Branching processes

Condition to stay in cone

Main idea

One can see that

E

[( n∑
k=1

e−S1(k)
)−1( n∑

k=1

e−S2(k)
)−1

]

⩾ E

[( n∑
k=1

e−S1(k)
)−1( n∑

k=1

e−S2(k)
)−1

, min
k⩽n

{S1(k), S2(k)} > −R

]
× P
(
min
k⩽n

{S1(k),S2(k)} > −R
)
.

Stopping time

For positive quadrant K2 let τx be the first time n such that x + S(n) leaves K2.
Then we can rewrite the expression above as

E

[( n∑
k=1

e−S1(k)
)−1( n∑

k=1

e−S2(k)
)−1

, τ(R,R) > n

]
· P
(
τ(R,R) > n

)
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Random walks in cones

Random walks in cones

Main asymptotic

Let K2 be a strictly positive quadrant in R2. Let also Cor(X1(1),X2(1)) = ϱ. Then:

P(τx > n) ∼ V (x)
1

nθ(ϱ)/2
,

where ϱ ∈ (−1, 1) and θ(ϱ) is some function from ϱ.
(V. Wachtel, D. Denisov ’15)

Harmonic property and upper bound

V (x) is strictly positive in K2 and for arbitrary x ∈ K2 one has

E
(
V (x + X ), x + X ∈ K2

)
− V (x) = 0.

Moreover, for arbitrary x ∈ K2 it is true that

V (x) ⩽ C · |x |θ(ϱ)−1 · dist(x , ∂K2)
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One-dimensional case Two-dimensional case

Main results

First result

Theorem 1

Assume that |ϱ| < 1. Set

θ(ϱ) =
π

2 arccos(−ϱ)
.

Assume also that E|X (n)|2θ and E|X (n)|2 log(1 + |X (n)|) are finite. Then for every
starting point z for branching process as in the main example there exists a positive
constant A = A(z) such that

Pz (Z1(n) > 0,Z2(n) > 0) ∼ An−θ(ϱ) as n → ∞. (1)
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Main results

Second result

Theorem 2

On the set E(n) := {Z1(n) > 0,Z2(n) > 0} we define

z(n)(t) =

(
logZ1(nt)√

n
,
logZ1(nt)√

n

)
, t ∈ [0, 1].

Suppose all the conditions of Theorem 1 hold. Then the sequence z(n) conditioned on
E(n) converges in distribution on D[0, 1] with uniform metric. The limiting process
can be called Brownian meander in K2.
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One-dimensional case Two-dimensional case

Main results

Idea of the proof of the Theorem 1

Doob h-transform

For arbitrary v ∈ K2 one can consider Doob h-transform:

P̂
(
x + S(n) = v

)
:=

V (v)

V (x)
P
(
x + S(n) = v , τx > n

)
.

We want to estimate P̂
(
x1 + S1(n) < h(n)

)
for some function h(·).

Estimation in crucial points

First, we are estimating small deviations of the form
P̂
(
x + S2(n) < h(n), x + S1(n) ⩽ χ(n)

)
. Main estimates are obtained from small

enough values of V (v).
Second, we are estimating large deviations of the form
P̂
(
x + S2(n) < h(n), x + S1(n) > χ(n). Main estimates are obtained from Fuk-Nagaev

inequalities.
This estimates guarantee us that

E

[( n∑
k=1

e−S1(k)
)−1( n∑

k=1

e−S2(k)
)−1

, τ(R,R) > n

]
.

Using standard technics of mathematical analysis we then prove the Theorem 1.
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