Coexisting of branching populations Branching and persistence 2025

Elizarov Nikita, Vitali Wachtel

Bielefeld University

9th of April, Angers

もしゃ (中・ (山・ (中・ (日・)))

Elizarov N. Wachtel V. Coexisting of branching populations **Bielefeld University**

Outline

1 One-dimensional case

- Branching processes
- Random walks in cones

2 Two-dimensional case

- Branching processes
- Random walks in cones
- Main results

・ロト・西ト・西ト・西・ うくの

Bielefeld University

Elizarov N. Wachtel V.

Branching process in random environment

Random environment

We consider a random environment sequence Q = (Q(1), Q(2), ...) of random probability measures on \mathbb{N}_0 . We also consider it to be i.i.d. thus Q(1), Q(2), ... are independent copies of some random probability measure μ with generating function Fon \mathbb{N}_0 .

Elizarov N. Wachtel V. Coexisting of branching populations

Branching process in random environment

Random environment

We consider a random environment sequence Q = (Q(1), Q(2), ...) of random probability measures on \mathbb{N}_0 . We also consider it to be i.i.d. thus Q(1), Q(2), ... are independent copies of some random probability measure μ with generating function Fon \mathbb{N}_0 .

Branching process

Branching processes in random environment could be thought of as developing in a scheme of two stages. First, the random environment Q = (Q(1), Q(2), ...) is established. Given its value q = (q(1), q(2), ...), the branching process \mathcal{Z} then evolves in the varying environment Q. Z(n) may again be realized as

$$Z(n) = \sum_{i=1}^{Z(n-1)} Y(i, n),$$

where given the environment q(n), Y(i, n) are random independent variables with distributions q(n).

イロト イポト イヨト イヨト

Random walks

Associated random walk

Let Q be an i.i.d. environment. We require F[0] < 1 and $0 < \mathbf{E}\mu < \infty$ a.s. Then we can define $X(n) := \log \mathbf{E}q(n)$ and

$$S(0) = 0, \quad S(n) = \sum_{i=1}^{n} X(n)$$

 ${S(n)}_{n=0}^{\infty}$ is called an associated random walk.

< ロ > < 部 > < き > < き > ...

Random walks

Associated random walk

Let Q be an i.i.d. environment. We require F[0] < 1 and $0 < {\bf E}\mu < \infty$ a.s. Then we can define $X(n) := \log {\bf E}q(n)$ and

$$S(0) = 0, \quad S(n) = \sum_{i=1}^{n} X(n)$$

 $\{S(n)\}_{n=0}^{\infty}$ is called an associated random walk.

Critical Branching process

We say that Branching process in random environment is critical if

$$\limsup_{n\to\infty} S(n) = \infty, \ \liminf_{n\to\infty} S(n) = -\infty$$

Elizarov N. Wachtel V

Coexisting of branching populations

Two-dimensional case 0000 000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two-dimensional case 0000 000

Survival probability

Survival probability in critical case

There exists a positive finite constant $\mathcal Y$ such that, as $n \to \infty$:

$$\mathbb{P}(Z(n) > 0) \sim \mathcal{Y} \cdot \mathbb{P}(\min\{S(0), \dots, S(n)\} \ge 0)$$

Bielefeld University

Elizarov N. Wachtel V. Coexisting of branching populations

Two-dimensional case

Survival probability

Survival probability in critical case

There exists a positive finite constant \mathcal{Y} such that, as $n \to \infty$:

$$\mathbb{P}ig(Z(n)>0ig)\sim \mathcal{Y}\cdot\mathbb{P}ig(\min\{S(0),\ldots S(n)\}\geqslant 0ig)$$

Stopping time

We define

$$\tau_x := \inf\{n \ge 1 : x + S(n) \le 0\} \ x \ge 0.$$

Then we can reformulate the result above as:

$$\mathbb{P}(Z(n) > 0) \sim \mathcal{Y} \cdot \mathbb{P}(\tau_0 > n).$$

Here we can consider stopping time τ_0 as a first time random walk $\{S(n)\}_{n=0}^{\infty}$ leaves the cone $\mathcal{K}^1 := \{y \in \mathbb{R} : y \ge 0\}$ if it starts at S(0) = 0.

・ロト ・伺 ト ・ ヨ ト ・ ヨ ト

Harmonic functions

Renewal function

In the critical case we have important result. Let V(x) be a renewal function for random walk $\{S(n)\}$. Then one has $\mathbb{P}(\tau_x > n) \sim \frac{V(x)}{\sqrt{n}}$ (Doney '95). For the renewal function in one-dimensional case main asymptotics is known

$$V(x) \sim C \cdot x, \quad x \to \infty,$$

where C > 0 is some constant that does not depend on x and n.

Fwo-dimensional case

▲日 > ▲聞 > ▲目 > ▲目 > ● ● ●

Elizarov N. Wachtel V. Coexisting of branching populations **Bielefeld University**

Harmonic functions

Renewal function

In the critical case we have important result. Let V(x) be a renewal function for random walk $\{S(n)\}$. Then one has $\mathbb{P}(\tau_x > n) \sim \frac{V(x)}{\sqrt{n}}$ (Doney '95). For the renewal function in one-dimensional case main asymptotics is known

$$V(x)\sim C\cdot x,\quad x
ightarrow\infty,$$

where C > 0 is some constant that does not depend on x and n.

Harmonic property

V(x) is strictly positive in \mathcal{K}^1 and moreover for arbitrary $x \in \mathcal{K}^1$ it is true that:

$$\mathbb{E}\big[V(x+X), \ x+X \in \mathcal{K}^1\big] - V(x) = 0,$$

where X is one step of random walk. In other words, V is a strictly positive eigenfunction for operator

$$f \rightarrow \mathbb{E}f - f$$
,

with eigenvalue 0.

Elizarov N. Wachtel V

Multi-type Branching processes in random environment

One-dimensional Branching processes in joint environment

Here we consider several population with the following properties:

- particles from different populations can only produce particles from its own population;
- one-dimensional environments for different populations could be dependent.

For two-dimensional case we can represent $\{(Z_1(n), Z_2(n))\}_{n=0}^{\infty}$ in the following way:

$$(Z_1(n), Z_2(n)) = \sum_{i=1}^{Z_1(n-1)} (Y_1(i, n), 0) + \sum_{j=1}^{Z_2(n-1)} (0, Y_2(j, n)).$$

Critical case

We are interested in the case when both one-dimensional branching processes are critical.

Bielefeld University

・ロト ・同ト ・ヨト ・ヨト

One-dimensional case

Two-dimensional case ○●○○ ○○○

Bielefeld University

Branching processes

Main example

Consider two one-dimensional i.i.d. environments $(Q_1(1), Q_1(2), ...)$ and $(Q_2(1), Q_2(2), ...)$ with corresponding generating functions $(F_1^{(1)}, F_1^{(2)}, ...)$ and $(F_2^{(1)}, F_2^{(2)}, ...)$:

$$F_1^{(i)}(s_1) = \sum_{k=1}^{\infty} \mathbf{P}(Q_1(i) = k) s_1^k = p_1(i) + \sum_{k=1}^{\infty} (1 - p_1(i))^k p_1(i) s_1^k$$

$$F_2^{(j)}(s_2) = \sum_{k=1}^{\infty} \mathbf{P}(Q_2(j) = k) s_2^k = p_2(j) + \sum_{k=1}^{\infty} (1 - p_2(j))^k p_2(j) s_2^k$$

Then $\mathbf{E}Q_1(1) = rac{p_1}{1-\rho_1}$ and $\mathbf{E}Q_2(1) = rac{p_2}{1-\rho_2}$.

$$X_1(i) := \log \mathsf{E}Q_1(i), \ X_2(i) := \log \mathsf{E}Q_2(i), \ S_1(n) := \sum_{k=1}^n X_1(k) \quad S_2(n) := \sum_{k=1}^n X_2(k),$$

where we set

$$\operatorname{Cor}[X_1(1)X_2(1)] = \varrho, \quad \varrho \in (1,1).$$

<ロト <問ト < 国ト < 国ト

We also consider $\mathbb{E}[X_1(1)^2] = \mathbb{E}[X_2(1)^2] = 1$.

Elizarov N. Wachtel V.

Global goal

Survival probability and coexistence

We are considering which is called **coexistence** probability: $\mathbb{P}(Z_1(n) > 0, Z_2(n) > 0)$.

Elizarov N. Wachtel V. Coexisting of branching populations **Bielefeld University**

Global goal

Survival probability and coexistence

We are considering which is called **coexistence** probability: $\mathbb{P}(Z_1(n) > 0, Z_2(n) > 0)$.

Main example

For one-dimensional case we can represent $\mathbb{P}(Z(n) > 0))$ in a more convenient form:

$$\mathbb{P}(Z(n) > 0)) = \left(\frac{1}{\mathsf{E}Q(1)\dots\mathsf{E}Q(n)} + \sum_{k=1}^{n} \frac{\phi(Q(1),\dots,Q(n))}{\mathsf{E}Q(1)\dots\mathsf{E}Q(n)}\right)^{-1}$$

Recalling definition of S(k) and using the expression above for the main example we can simplify:

$$\mathbb{P}(Z_1(n) > 0, Z_2(n) > 0) = \mathbb{E}\left[\left(\sum_{k=1}^n e^{-S_1(k)}\right)^{-1}\left(\sum_{k=1}^n e^{-S_2(k)}\right)^{-1}\right].$$

<ロト < 母 ト < 臣 ト < 臣 ト < 臣 つ の < つ</p>

Bielefeld University

Two-dimensional case 000● 000

Condition to stay in cone

Main idea

One can see that

$$\begin{split} \mathbb{E}\bigg[\big(\sum_{k=1}^{n} e^{-S_{1}(k)}\big)^{-1}\big(\sum_{k=1}^{n} e^{-S_{2}(k)}\big)^{-1}\bigg] \\ & \geq \mathbb{E}\bigg[\big(\sum_{k=1}^{n} e^{-S_{1}(k)}\big)^{-1}\big(\sum_{k=1}^{n} e^{-S_{2}(k)}\big)^{-1}, \ \min_{k \leq n} \{S_{1}(k), S_{2}(k)\} > -R\bigg] \\ & \times \mathbb{P}\big(\min_{k \leq n} \{S_{1}(k), S_{2}(k)\} > -R\big). \end{split}$$

Stopping time

For positive quadrant \mathcal{K}^2 let τ_x be the first time *n* such that x + S(n) leaves \mathcal{K}^2 . Then we can rewrite the expression above as

$$\mathbb{E}\left[\left(\sum_{k=1}^{n} e^{-S_1(k)}\right)^{-1}\left(\sum_{k=1}^{n} e^{-S_2(k)}\right)^{-1}, \ \tau_{(R,R)} > n\right] \cdot \mathbb{P}(\tau_{(R,R)} > n)$$

Elizarov N. Wachtel V.

Random walks in cones

Main asymptotic

Let \mathcal{K}^2 be a strictly positive quadrant in \mathbb{R}^2 . Let also $Cor(X_1(1), X_2(1)) = \varrho$. Then:

$$\mathbb{P}(au_x > n) \sim V(x) rac{1}{n^{ heta(arrho)/2}},$$

where $\varrho \in (-1, 1)$ and $\theta(\varrho)$ is some function from ϱ . (V. Wachtel, D. Denisov '15)

Two-dimensional case

Random walks in cones

Main asymptotic

Let \mathcal{K}^2 be a strictly positive quadrant in \mathbb{R}^2 . Let also $Cor(X_1(1), X_2(1)) = \varrho$. Then:

$$\mathbb{P}(au_x > n) \sim V(x) rac{1}{n^{ heta(arrho)/2}},$$

where $\varrho \in (-1, 1)$ and $\theta(\varrho)$ is some function from ϱ . (V. Wachtel, D. Denisov '15)

Harmonic property and upper bound

V(x) is strictly positive in \mathcal{K}^2 and for arbitrary $x \in \mathcal{K}^2$ one has

$$\mathbb{E}\big(V(x+X), \quad x+X \in \mathcal{K}^2\big) - V(x) = 0.$$

Moreover, for arbitrary $x \in \mathcal{K}^2$ it is true that

$$V(x) \leqslant C \cdot |x|^{\theta(\varrho) - 1} \cdot dist(x, \partial \mathcal{K}^2)$$

Main results

First result

Theorem 1

Assume that $|\varrho| < 1$. Set

$$\theta(\varrho) = \frac{\pi}{2 \arccos(-\varrho)}.$$

Assume also that $\mathbb{E}|X(n)|^{2\theta}$ and $\mathbb{E}|X(n)|^2 \log(1 + |X(n)|)$ are finite. Then for every starting point z for branching process as in the main example there exists a positive constant A = A(z) such that

$$\mathbb{P}_{z}(Z_{1}(n) > 0, Z_{2}(n) > 0) \sim An^{-\theta(\varrho)}$$
 as $n \to \infty$. (1)

イロト イヨト イヨト イヨト

► Ē ∽ ९ (Bielefeld University Main results

Second result

Theorem 2

On the set $E(n) := \{Z_1(n) > 0, Z_2(n) > 0\}$ we define

$$z^{(n)}(t)=\left(rac{\log Z_1(nt)}{\sqrt{n}},rac{\log Z_1(nt)}{\sqrt{n}}
ight),\quad t\in[0,1].$$

Suppose all the conditions of Theorem 1 hold. Then the sequence $z^{(n)}$ conditioned on E(n) converges in distribution on D[0,1] with uniform metric. The limiting process can be called Brownian meander in \mathcal{K}^2 .

イロト イポト イヨト イヨト

Main results

Idea of the proof of the Theorem 1

Doob h-transform

For arbitrary $v \in \mathcal{K}^2$ one can consider Doob h-transform:

$$\widehat{\mathbb{P}}(x+S(n)=v):=\frac{V(v)}{V(x)}\mathbb{P}(x+S(n)=v,\tau_x>n).$$

We want to estimate $\hat{\mathbb{P}}(x_1 + S_1(n) < h(n))$ for some function $h(\cdot)$.

Bielefeld University

Elizarov N. Wachtel V. Coexisting of branching populations

Idea of the proof of the Theorem 1

Doob h-transform

For arbitrary $v \in \mathcal{K}^2$ one can consider Doob h-transform:

$$\hat{\mathbb{P}}(x+S(n)=v):=\frac{V(v)}{V(x)}\mathbb{P}(x+S(n)=v,\tau_x>n).$$

We want to estimate $\hat{\mathbb{P}}(x_1 + S_1(n) < h(n))$ for some function $h(\cdot)$.

Estimation in crucial points

First, we are estimating small deviations of the form $\hat{\mathbb{P}}(x + S_2(n) < h(n), x + S_1(n) \leq \chi(n))$. Main estimates are obtained from small enough values of V(v).

Second, we are estimating large deviations of the form

 $\hat{\mathbb{P}}(x + S_2(n) < h(n), x + S_1(n) > \chi(n)$. Main estimates are obtained from Fuk-Nagaev inequalities.

This estimates guarantee us that

$$\mathbb{E}\left[(\sum_{k=1}^{n} e^{-S_1(k)})^{-1} (\sum_{k=1}^{n} e^{-S_2(k)})^{-1}, \ \tau_{(R,R)} > n \right].$$

Elizarov N. Wachtel V