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PART I

Interacting particles, determinantal processes,
conditioned walks



Introduction

• Model of interacting particles in interlacing array
(Gelfand-Tsetlin pattern) in space inhomogeneous
environment.

• Homogeneous model studied by Borodin-Ferrari and
Warren-Windridge/Dieker-Warren.

• Particles move with continuous time jumps or discrete time
Bernoulli or geometric jumps subject to interactions.

• Projections on edge particles (1+1)-dim inhomogeneous
growth model, pushTASEP and TASEP-like systems.

• Projection on top row discrete Dyson Brownian motion.
• Particle and time (but not space!) inhomogeneities come

up in integrable models of last passage percolation (LPP).
• Many connections. In part II will focus on Aztec diamond

connection via the shuffling algorithm.



The basic data

• An inhomogeneity sequence a = (ax)x∈Z+ . Uniformly
bounded in (0,∞).

• Particles live in Z+ and a inhomogeneity of space.
• To inhomogeneity a associate sequence of “characteristic

polynomials” (px)x∈Z+ given by

px(z) =
x−1∏
k=0

(
1 −

z
ak

)
.

• Inhomogeneities in time and of particles can also be
introduced and keep the “integrability” of the model. But
their role somewhat different.



The one-dimensional dynamics

• Three types of dynamics.
• 1. Cts time. General pure-birth chain in continuous time.

When at location x particle jumps to x + 1 with rate ax .
• 2. Bernoulli. Inhomogeneous Bernoulli jumps in discrete

time. When at location x particle jumps to x + 1 with
probability ax and stays put with probability 1 − ax .

• Can add extra parameter αt at time t . Jump probability to
x + 1 at time t given by αtax and stay at x with 1 − αtax .

• 3. Geometric. Inhomogeneous geometric jumps in
discrete time. Particle at location x jumps to location y ≥ x
with probability (1 + ay)

−1∏y−1
k=x ak (1 + ak )

−1.
• Can think of passing each edge (k , k + 1) as an

independent trial with success probability ak (1 + ak )
−1.

• Can also add extra parameter βt at time t .



Interlacing array

• Ordered configurations

WN =
{
x = (x1, . . . , xN) : 0 ≤ x1 < x2 < · · · < xN

}
.

• x ∈WN interlaces with y ∈WN+1, x ≺ y, if

y1 ≤ x1 < y2 ≤ x2 < · · · < yN ≤ xN < yN+1.

• Interlacing array
(
x(i)
)M
i=1

, M can be ∞, if x(i)
≺ x(i+1).

• Fully-packed configuration if x(n) = (0,1, . . . ,n − 1).
• Can think of all of the above in terms of partitions via

coordinate shift.



Dynamics in arrays I

• Each particle moves independently with above transition
probabilities subject to certain push-block interactions to
keep interlacing.

• In continuous time (no jumps at same time):

x x + 1 x + 2 x + 3 x + 4 x + 5
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Dynamics in arrays II
• In discrete time we sequentially update each level, from

bottom levels going up.
• For Bernoulli jumps:
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Dynamics in arrays III
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• Geometric step interactions similar but slightly more
involved/subtle. Use particle location at previous time-step
for blocking (“parallel update”).

• In discrete time, each step can be either Bernoulli or
geometric with an additional parameter αt or βt .



Autonomous edge particle systems

• The evolution of edge systems
(
X(i)

i

)N
i=1

and
(
X(i)

1

)N
i=1

is
autonomous.

• Right edge system: inhomogeneous space and time
pushTASEP with cts pure-jump, discrete-time Bernoulli or
geometric jumps.

• Left edge system: inhomogeneous space and time
zero-range/Boson particle system.

• Left edge under coordinate shift becomes a kind of
inhomogeneous TASEP (but not inhomogeneous-space
TASEP/slow bond problem!).

• Such particle systems arise from various integrable
percolation models. However, the inhomogeneities of the
environment become inhomogeneities of the particle (and
time) instead of space (and time) as they are here!



A structure theorem
Theorem (A. 2023)
Consider

((
X(n)

i (t)
)
i,n

; t ≥ 0
)

following the cts-time dynamics or

discrete-time dynamics with a mixture of time-inhomogeneous
Bernoulli or geometric jumps starting from the fully-packed
configuration. Then, we have:

1. The projection on any single level
(
X(N); t ≥ 0

)
is Markovian

with an explicit transition semigroup P(N)
s,t .

2. Correlations of whole array at fixed time or of any single
level at multiple times are determinantal, basically

P(particles at locations z1, . . . , zm) = det
(
K(zi , zj)

)m
i,j=1
.

for explicit K given as double-contour integral.

• Everything works for family of “consistent” initial conditions.



A limit theorem: short-time asymptotics
• Using the above result can prove the following theorem:

Theorem (A. 2023)
Consider

((
X(n)

i (t)
)
i,n

; t ≥ 0
)

following the cts time dynamics

starting from fully-packed configuration. Assume the average
ā = limN→∞N−1∑N−1

x=0 ax exists. Let ζ > 0. Then, for all m ≥ 1,(
X(N)

N−i+1

(
ζ
N

)
− N
)m
i=1

d
−→

(
B
ζā
i

)m
i=1
, as N →∞,

where, for σ > 0, Bσ1 > B
σ
2 > B

σ
3 > · · · are the ordered points of

the discrete Bessel determinantal point process Bσ on Z with
correlation kernel Jσ(x , y) given by, with x , y ∈ Z,

Jσ (x , y) =
1

(2πi)2

∮
|z|=1−

∮
|v |=1+

zx

vy+1 ez−1
−v−1+σv−σz 1

v − z
dzdv .



The semigroup P(N)

s,t I
• Explicit expression for the transition kernel

P
(N)
s,t (x,y) =

hN(y)
hN (x)

det
(
P

(1)
s,t (xi , yj)

)N
i,j=1
,

with hN(x) = (−1)
N(N−1)

2 det
(
∂i−1

z pxj (z)
∣∣∣
z=0

)N
i,j=1

.

• Question (work in progress). Does P(N)
s,t describe the

evolution of N independent random walks, each with
semigroup P(1)

s,t , conditioned to never intersect?
• Doob h-transform structure does not immediately imply

this specific conditioning. This conditioning gives rise to a
new Gibbs resampling property (cf. Brownian Gibbs
property) depending on a. Useful in taking N-limits.

• Think of as natural discrete (inhomogeneous) space
analogue of Dyson Brownian motion.



The semigroup P(N)

s,t II
• Want to show: let τN be the first collision time. Then, for

any fixed 0 ≤ t < s,

lim
s→∞

Py (τN > s − t)
Px (τN > s)

?
=
hN (y)
hN (x)

.

• Note that individual probabilities Px (τN > s) converge to 0
as s →∞. Subtle cancellation in taking the ratio.

• I have already proven a modification of this statement,
when adding different ordered “drifts” to each walk.

• Makes the asymptotics problem easier as non-collision
probability converges to strictly positive explicit limit. With
prob 1 walks become asymptotically ordered based on the
order of their drifts.

• Taking the limit of all “drifts” to zero formally recovers the
desired statement above.



On the proof of structure theorem I
• First prove that the semigroups P(N+1)

s,t and P(N)
s,t are

intertwined:

P
(N+1)
s,t La

N+1,N = La
N+1,NP

(N)
s,t .

• The Markov kernels (not obvious that they are indeed
Markov) La

N+1,N fromWN+1 toWN are given by,

La
N+1,N (y,x) =

hN(x)
hN+1(y)

N∏
i=1

1
axi

1x≺y.

• Given two intertwined semigroups there are many ways to
couple them. General recipes exist e.g. Diaconis-Fill
construction. Later developed by Borodin, Ferrari, Corwin,
Petrov, .... Some couplings less natural than others e.g.
projections on edge systems may not be Markovian.



On the proof of structure theorem II

• Coupling here constructed from formula for transition
probabilities of bi-variate chain “arising” from coalescing
random walks in a uniform way for all three types of motion.

• Matches the coupling of Diaconis-Fill for cts time and
Bernoulli jumps. But different for geometric jumps! D-F
geometric coupling gives non-Markovian left edge system.

• In homogeneous case ax ≡ 1 the “coalescing walk
coupling” matches coupling of Warren-Windridge.

• Finally to compute correlation kernel need to solve a
certain bi-orthogonalisation problem.



Main computational tool
• Generalisation of a Toeplitz matrix [Tf (x , y)]x ,y∈Z+

given by:

Tf (x , y) = −
1

2πi
1
ay

∮
Ca

px(z)
py+1(z)

f(z)dz,

with Ca counter-clockwise contour encircling {ax }x∈Z+ .
• For ax ≡ 1 this is just Toeplitz matrix with symbol f(1 − z).
• Similar to a Toeplitz matrix (i.e. ax ≡ 1) with explicit but

complicated change of basis matrix A(a). Similarity not
very useful for our purposes though.

• Probabilistic applications given by (cf. 1-d semigroup P(1)
s,t ):

f(z) =


e−tz , pure-birth chain, cts time,
1 − αz, Bernoulli walk, discrete time,
(1 + βz)−1, geometric walk, discrete time.

• Could also consider matrix symbol f.



PART II

Bernoulli dynamics and the Aztec diamond



The Aztec diamond I

• Combinatorial model introduced by Elkies, Kuperberg,
Larsen, Propp in ’92. Enormous amount of work since.

• Sawtooth domain in Z2.
• Can tile area with horizontal and vertical dominoes.
• Equivalent to dimer cover of Aztec diamond graph.
• Aztec diamond graph of size N consists of N2 squares.
• We will put a coordinate system on the graph.



The Aztec diamond II
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The Aztec diamond III

(0,1)

(0,2)

(0,3)

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

space x = 0, . . . ,N − 1

level n = 1, . . . ,N (x ,n)w e

s

n

• The Aztec diamond graph of size N = 3, along with the
corresponding coordinate system.

• Coordinates of the blue vertical edge are (w, (1,3)), while
coordinates of the horizontal orange edge are (n, (1,3)).



The Aztec diamond IV



The Aztec diamond V

• A weightingW of Aztec diamond graph of size N is a
function from its edge set to (0,∞).

• WriteWe for its value at the edge e.
• Given a weightingW of Aztec diamond graph of size N

define the probability measure P(N)

W
on dimer coverings of

the graph of size N by:

P
(N)

W
(dimer cover) =

1
ZW

∏
e∈dimer cover

We,

where ZW =
∑

all dimer covers
∏

e∈dimer coverWe is the
normalisation constant/partition function.



The Aztec diamond VI

• Given suchW associate probabilities ρW to each square
(x ,n) by:

ρW(x ,n) =
Ww,(x ,n)We,(x ,n)

Ww,(x ,n)We,(x ,n) +Wn,(x ,n)Ws,(x ,n)
.

• Gauge-equivalence: Multiplying all edges incident to a
vertex by a number in (0,∞) does not change the
probability measure on tilings or the square probabilities.

• From probabilistic standpoint gauge-equivalent weightings
are the same.



Particle system from tiling
• Given a dimer cover, associate a particle configuration by

putting a particle in each square with a south or east edge.
• The particle inherits the coordinates of the square.
• Fact that there are exactly n particles at level n.

(0,1) (1,2)

(0,2)

(1,1)
(1,2)

(0,2)

(1,1) (2,2)

(0,2)
(0,3)

(0,3)
(0,3)



Urban renewal/spider move I

• GivenW weighting of size k Aztec diamond graph.
• Urban renewal/spider move mapURk

k−1 constructs
weightingURk

k−1 (W) of size k − 1 graph.
• More generally, define the maps for m < k ,

UR
k
m =URm+1

m ◦ · · · ◦ UR
k
k−1.



Urban renewal/spider move II

• Illustration of the urban renewal map for a single square.

square
(x ,n + 1)
in size
k + 1 graph

square
(x ,n)
in size
k + 1 graph

square
(x + 1,n + 1)
in size
k + 1 graph

square
(x + 1,n)
in size
k + 1 graph

square
(x ,n)
in size
k graph

a b

c

d

b
ab+cd

a
ab+cd

c
ab+cd

d
ab+cd



Some motivation
• The fact that random tilings of the Aztec diamond with

general weightingW have determinantal correlations is
well-known from Kasteleyn theory.

• A lot of effort to compute kernel explicitly, by variety of
methods, in form that can be analysed asymptotically
(Kenyon, Johansson, Borodin, Ferrari, Chhita, Duits,
Kuijlaars, Berggren,...).

• Central example two-periodic weighting. Gives rise to
gas/smooth (exponential decay of correlations) region in
the limit.

• Some motivation behind what comes next: try to find some
conditioned random walk/Gibbs resampling property
structure behind random tilings of Aztec diamond with
weightingW.

• To begin with, we need some dynamics.



The shuffling algorithm
• This is a perfect sampling algorithm of a random
P
(N)

W
-distributed tiling of the size N Aztec diamond.

• Start from size 0 Aztec diamond. Sequentially, from tiling
of Aztec diamond of size k , we create a tiling of Aztec
diamond of size k + 1.

• Each iteration of the algorithm consists of 4 steps.
1. Embedding.
2. Deletion.
3. Sliding.
4. Creation.

• This induces random evolution of corresponding particles.
• Steps 1-3 are deterministic.
• Probability and dependence onW only comes in Step 4.
• Theorem (Propp) that when algorithm terminates, the

resulting size N Aztec diamond tiling is P(N)

W
-distributed.



Embedding

• Embed graph of size k into graph of size k + 1 so that
square (x ,n) in graph of size k consists of the west, north,
east and south edges of squares (x ,n), (x ,n + 1),
(x + 1,n + 1) and (x + 1,n) in size k + 1 graph respectively.

• This embeds dimer covering of graph of size k into a
subcollection of edges of graph of size k + 1.



Deletion

• If in this embedding two dimers of the dimer covering
belong to the same square of the size k + 1 graph (in this
embedding) we remove them.



Sliding

• Then move all dimers by one edge in the opposite direction
of their names, viewed as dimers in the size k + 1 graph.

• Namely, a north dimer moves down by one, a south dimer
moves up by one, a west dimer moves right by one and an
east dimer moves left by one.



Creation

• This leaves a number of squares not covered by any
dimers which are filled in the following fashion.

• If square (x ,n) is empty it is covered with a west-east dimer
pair with probability ρ

UR
N
k+1(W)(x ,n) and covered with a

north-south dimer pair with probability 1 − ρ
UR

N
k+1(W)(x ,n).

• This gives a dimer covering of the size k + 1 graph. In fact,
this dimer covering is P(k+1)

UR
N
k+1(W)

-distributed.



Shuffle in action: Iteration 1

• Suppose we haveW weighting of Aztec diamond of size 3.

• We want to sample tiling according to P(3)
W

.

• Run urban renewal to createUR3
2(W) andUR3

1(W).
Recall we will need the corresponding square probabilities.

ρ
UR

3
1(W)(0,1)



Shuffle in action: Iteration 2

ρ
UR

3
2(W)(1,1)

1 − ρ
UR

3
2(W)(0,2)



Shuffle in action: Iteration 3 part I



Shuffle in action: Iteration 3 part II

ρW(0,2) 1 − ρW(1,3)

1 − ρW(2,1)



Dynamics on arrays from shuffle I

• LetW be a weighting of size N Aztec diamond.

• Define for j ≤ t ≤ N, 1 ≤ i ≤ j, x(j),sh
i (t) to be position of i-th

particle of level j after t steps of the shuffle.
• On the other hand, consider the push-block Bernoulli

dynamics except that a particle at space location x, at level
n, at time t has jump probability ρ

UR
N
t+n(W)(x ,n) instead.

• This defines a stochastic process(
Y(j)

i (t);0 ≤ t ≤ N − j,1 ≤ i ≤ j,1 ≤ j ≤ N
)
.



Dynamics on arrays from shuffle II

Proposition
Let N ≥ 1. LetW be a weighting of size N Aztec diamond. Let
Y(j)

i (t) and x(j),sh
i (t) be as above. Then, we have the following

equality in distribution, jointly in all involved indices,(
Y(j)

i (t − j);1 ≤ j ≤ N,1 ≤ i ≤ j, j ≤ t ≤ N
) d
=(

x(j),sh
i (t);1 ≤ j ≤ N,1 ≤ i ≤ j, j ≤ t ≤ N

)
.

• Uniform weight case due to Nordenstam.
• Uniform case restricted to edge particle systems: original

work of Jokusch, Propp, Shor.



Coupling Aztec diamonds of all sizes

• Want to couple random tilings of Aztec diamonds of all
sizes. This gives particle system on infinite arrays living for
all times.

• Need the notion of sequence of consistent weightings:(
W

(m)
)∞
m=1

such that for all m ≥ 1,

W
(m) is gauge-equivalent toURm+1

m

(
W

(m+1)
)
.

• Basically this means that random tiling obtained by running
m steps of the shuffle is P(m)

W(m)
-distributed.

• Easy to see that sequence of uniform weights is
consistent. In general need some computation to check.



A special inhomogeneous weight
• Suppose z(1), z(2) ∈ (0,∞)Z+ such that

z(1)
x

z(1)
x + z(2)

x

= ax .

• Consider, for any k ≥ 1, the following weightingW(k),a,

W
(k),a
e,(x ,n) =W

(k),a
n,(x ,n) = 1,W(k),a

w,(x ,n) = z(1)
x ,W

(k),a
s,(x ,n) = z(2)

x .

• Inhomogeneous only in the space direction.
• Not hard to show that the sequence

(
W

(k),a
)∞
k=1

is
consistent. Moreover the square probabilities ρ

W(k),a are

ρ
W(k),a(x ,n) = ax .

• Inhomogeneous model in other direction (level) gives
particle-dependent model of B-F. Aztec diamond shuffle
gives some sort of duality between the two (time-shifted)
dynamics.



Conditioned walks and the Aztec diamond
Theorem (A. 2023)
Consider the probability measures P(k)

W(k),a associated to
W

(k),a. Then, there exists a coupling (shuffle dynamics!) of the
P
(k)
W(k),a such that if x(j)i (m), for m ≥ j, is the location of the i-th

south or east dimer on level j of the tiling distributed according
to P(m)

W(m),a in this coupling, then jointly for all N ≥ 1,(
x(N)

1 (t + N), x(N)

2 (t + N), . . . , x(N)

N (t + N); t ≥ 0
)

evolves as a Markov process inWN with explicit transition
probabilities. Moreover, the correlations of this process in time
are determinantal with an explicit correlation kernel.
• Proof of probabilistic statement rather roundabout by

connecting to dynamics on arrays. Is there a direct proof?
• Computation of kernel can also be obtained by other

methods alluded to earlier.



Some questions

• Scaling limits: other local limits or global limits?
• Infinite line ensemble limit of inhomogeneous walks

conditioned to never intersect?
• Conditioned random walks structure in two-periodic Aztec

diamond?



Thank You

Thank you for your attention


